Theoretical and Mathematical Physics

, Volume 171, Issue 3, pp 848–861 | Cite as

Possibility of reconciling quantum mechanics with general relativity theory

  • D. A. Slavnov


We show that the mathematical formalisms of general relativity and of quantum mechanics can be reconciled based on an algebraic approach. In this case, gravity does not need to be quantized.


general relativity theory quantum mechanics algebraic approach 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, Freeman, San Francisco (1973).Google Scholar
  2. 2.
    J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Grundlehren Math. Wiss., Vol. 38), Springer, Berlin (1968).zbMATHCrossRefGoogle Scholar
  3. 3.
    D. A. Slavnov, Phys. Part. Nucl., 38, 147–176 (2007).CrossRefGoogle Scholar
  4. 4.
    D. A. Slavnov, Phys. Part. Nucl., 41, 149–173 (2010).CrossRefGoogle Scholar
  5. 5.
    D. A. Slavnov, Theor. Math. Phys., 142, 431–446 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    D. A. Slavnov, Theor. Math. Phys., 149, 1690–1701 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    D. A. Slavnov, Theor. Math. Phys., 155, 789–801 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris (1969).Google Scholar
  9. 9.
    S. Kochen and E. P. Specker, J. Math. Mech., 17, 59–87 (1967).MathSciNetzbMATHGoogle Scholar
  10. 10.
    A. N. Kolmogorov, Fundamental Concepts of Probability Theory [in Russian], Nauka, Moscow (1974); English transl. prev. ed.: Foundations of the Theory of Probability, Chelsea, New York (1956).Google Scholar
  11. 11.
    J. Neveu, Bases mathématiques du calcul des probabilités, Masson, Paris (1970).zbMATHGoogle Scholar
  12. 12.
    M. A. Naimark, Normed Rings [in Russian], Nauka, Moscow (1968); English transl., Wolters-Noordhoff, Groningen (1970).Google Scholar
  13. 13.
    G. G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory (Interscience Monogr. and Texts Phys. Astro., Vol. 26), Wiley, New York (1972).zbMATHGoogle Scholar
  14. 14.
    É. Cartan, Riemannian Geometry in an Orthogonal Frame, World Scientific, River Edge, N. J. (2001).CrossRefGoogle Scholar
  15. 15.
    L. Landau and E. Lifshitz, Field Theory [in Russian] (Vol. 2 of Course of Theoretical Physics), Fizmatlit, Moscow (2006); English transl. prev. ed.: The Classical Theory of Fields, Pergamon, Oxford (1971).Google Scholar
  16. 16.
    P. A. M. Dirac, General Theory of Relativity, Princeton Univ. Press, Princeton, N. J. (1996).zbMATHGoogle Scholar
  17. 17.
    N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge Univ. Press, Cambridge (1984).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations