Skip to main content
Log in

Super Riemann theta function periodic wave solutions and rational characteristics for a supersymmetric KdV-Burgers equation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Using a multidimensional super Riemann theta function, we propose two key theorems for explicitly constructing multiperiodic super Riemann theta function periodic wave solutions of supersymmetric equations in the superspace N+1,MΛ , which is a lucid and direct generalization of the super-Hirota-Riemann method. Once a supersymmetric equation is written in a bilinear form, its super Riemann theta function periodic wave solutions can be directly obtained by using our two theorems. As an application, we present a supersymmetric Korteweg-de Vries-Burgers equation. We study the limit procedure in detail and rigorously establish the asymptotic behavior of the multiperiodic waves and the relations between periodic wave solutions and soliton solutions. Moreover, we find that in contrast to the purely bosonic case, an interesting phenomenon occurs among the super Riemann theta function periodic waves in the presence of the Grassmann variable. The super Riemann theta function periodic waves are symmetric about the band but collapse along with the band. Furthermore, the results can be extended to the case N > 2; here, we only consider an existence condition for an N-periodic wave solution of a general supersymmetric equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Novikov, Funct. Anal. Appl., 8, 236–246 (1974).

    Article  MATH  Google Scholar 

  2. B. A. Dubrovin, Funct. Anal. Appl., 9, 215–223 (1975).

    Article  Google Scholar 

  3. A. R. Its and V. B. Matveev, Funct. Anal. Appl., 9, 65–66 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  4. P. D. Lax, Commun. Pure Appl. Math., 28, 141–188 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  5. H. P. McKean and P. van Moerbeke, Invent. Math., 30, 217–274 (1975).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. E. D. Belokolos, A. I. Bobenko, V. Z. Enolskii, A. R. Its, and V. B. Matveev, Algebro-Geometrical Approach to Nonlinear Integrable Equations, Springer, Berlin (1994).

    Google Scholar 

  7. F. Gesztesy and H. Holden, Soliton Equations and Their Algebro-Geometric Solutions (Cambridge Stud. Adv. Math., Vol. 79), Cambridge Univ. Press, Cambridge (2003).

    Book  MATH  Google Scholar 

  8. J. S. Geronimo, F. Gesztesy, and H. Holden, Commun. Math. Phys., 258, 149–177 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Z. Qiao, Commun. Math. Phys., 239, 309–341 (2003).

    Article  ADS  MATH  Google Scholar 

  10. R. Zhou, J. Math. Phys., 38, 2535–2346 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. C. Cao, Y. Wu, and X. Geng, J. Math. Phys., 40, 3948–3970 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. X. Geng, Y. Wu, and C. Cao, J. Phys. A, 32, 3733–3742 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. J. Atkinson and F. Nijhoff, Commun. Math. Phys., 299, 283–304 (2010); arXiv:0911.0458v1 [nlin.SI] (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Y. C. Hon and E. G. Fan, J. Math. Phys., 46, 032701 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  15. R. Hirota, The Direct Methods in Soliton Theory (Cambridge Tracts Math., Vol. 155), Cambridge, Cambridge Univ. Press (2004).

    Book  Google Scholar 

  16. R. Hirota, X.-B. Hu, and X.-Y. Tang, J. Math. Anal. Appl., 288, 326–348 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  17. X.-B. Hu and P. A. Clarkson, J. Phys. A, 28, 5009–5016 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. X.-B. Hu, C.-X. Li, J. J. C. Nimmo, and G.-F. Yu, J. Phys. A, 38, 195–204 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. D. Zhang, J. Phys. Soc. Jpn., 71, 2649–2656 (2002).

    Article  ADS  MATH  Google Scholar 

  20. A. Nakamura, J. Phys. Soc. Jpn., 47, 1701–1705 (1979).

    Article  ADS  Google Scholar 

  21. A. Nakamura, J. Phys. Soc. Jpn., 48, 1365–1370 (1980).

    Article  ADS  Google Scholar 

  22. R. Hirota and M. Ito, J. Phys. Soc. Jpn., 50, 338–342 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  23. H. H. Dai, E. G. Fan, and X. G. Geng, “Periodic wave solutions of nonlinear equations by Hirota’s bilinear method,” arXiv:nlin/0602015v1 (2006).

  24. Y. Zhang, L. Ye, Y. Lv, and H. Zhao, J. Phys. A, 40, 5539–5549 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Y. C. Hon, E. Fan, and Z. Qin, Modern Phys. Lett. B, 22, 547–553 (2008).

    Article  ADS  MATH  Google Scholar 

  26. E. Fan and Y. C. Hon, Phys. Rev. E, 78, 036607 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  27. E. Fan, J. Phys. A, 42, 095206 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  28. E. G. Fan and Y. C. Hon, Stud. Appl. Math., 125, 343–371 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  29. W.-X. Ma, R. Zhou, and L. Gao, Modern Phys. Lett. A, 24, 1677–1688 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. S.-F. Tian and H.-Q. Zhang, J. Math. Anal. Appl., 371, 585–608 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  31. S.-F. Tian and H.-Q. Zhang, Commun. Nonlinear Sci. Numer. Simul., 16, 173–186 (2011).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. P. Ramond, Phys. Rev. D, 3, 2415–2418 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  33. J. Wess and B. Zumino, Nucl. Phys. B, 70, 39–50 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  34. F. A. Berezin, Introduction to Superanalysis (Math. Phys. Appl. Math., Vol. 9), Reidel, Dordrecht (1987).

    MATH  Google Scholar 

  35. Yu. I. Manin and A. Q. Radul, Commun. Math. Phys., 98, 65–77 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. P. Mathieu, J. Math. Phys., 29, 2499–2506 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. W. Oevel and Z. Popowicz, Commun. Math. Phys., 139, 441–460 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. A. S. Carstea, Nonlinearity, 13, 1645–1656 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. A. S. Carstea, A. Ramani, and B. Grammaticos, Nonlinearity, 14, 1419–1423 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. D. Sarma, Nucl. Phys. B, 681, 351–358 (2004); arXiv:nlin/0406067v1 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Q. P. Liu and Y. F. Xie, Phys. Lett. A, 325, 139–143 (2004); arXiv:nlin/0212002v2 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Q. P. Liu, Lett. Math. Phys., 35, 115–122 (1995); arXiv:hep-th/9409008v1 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Q. P. Liu, X.-B. Hu, and M.-X. Zhang, Nonlinearity, 18, 1597–1603 (2005); arXiv:nlin/0407050v2 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. S. Ghosh and D. Sarma, Nonlinearity, 16, 411–418 (2003); arXiv:nlin/0202031v1 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. S.-F. Tian and H.-Q. Zhang, J. Nonlinear Math. Phys., 17, 491–502 (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. S.-F. Tian, Z. Wang, and H.-Q. Zhang, J. Math. Anal. Appl., 366, 646–662 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  47. V. S. Vladimirov and I. V. Volovich, Theor. Math. Phys., 59, 317–335 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  48. V. S. Vladimirov and I. V. Volovich, Theor. Math. Phys., 60, 743–765 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  49. D. Mumford, Tata Lectures on Theta (Prog. Math., Vol. 43), Vol. 2, Jacobian Theta Functions and Differential Equations, Birkhäuser, Boston, Mass. (1984).

    Google Scholar 

  50. I. McArthur and C. M. Yung, Modern Phys. Lett. A, 8, 1739–1745 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. A. S. Carstea, “Hirota bilinear formalism and supersymmetry,” arXiv:nlin/0006032v1 (2000).

  52. T. Inami and H. Kanno, Commun. Math. Phys., 136, 519–542 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-fu Tian.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 170, No. 3, pp. 350–380, March, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Sf., Zhang, Hq. Super Riemann theta function periodic wave solutions and rational characteristics for a supersymmetric KdV-Burgers equation. Theor Math Phys 170, 287–314 (2012). https://doi.org/10.1007/s11232-012-0031-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-012-0031-8

Keywords

Navigation