Skip to main content
Log in

Axions and cosmic rays

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the propagation of a charged particle in a spatially constant but time-dependent pseudoscalar background. Physically, this pseudoscalar background could be provided by a relic axion density. The background leads to an explicit breaking of Lorentz invariance; processes such as p → pγ or e → eγ are consequently possible under some kinematic constraints. The phenomenon is described by the QED Lagrangian extended with a Chern-Simons term that contains a four-vector characterizing the breaking of Lorentz invariance induced by the time-dependent background. While the induced radiation (similar to the Cherenkov effect) is too small to influence the propagation of cosmic rays significantly, the hypothetical detection of the photons radiated by high-energy cosmic rays via this mechanism would provide an indirect way to verify the cosmological relevance of axions. We discuss the order of magnitude of the effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. F. Abbott and P. Sikivie, Phys. Lett. B, 120, 133–136 (1983).

    Article  ADS  Google Scholar 

  2. M. Kuster, G. Raffelt, and B. Beltrán, eds., Axions: Theory, Cosmology, and Experimental Searches (Lect. Notes Phys., Vol. 741), Springer, Berlin (2008).

    MATH  Google Scholar 

  3. E. W. Kolb and M. S. Turner, The Early Universe (Frontiers Phys., Vol. 69), Addison-Wesley, Redwood City, Calif. (1990); Y. Sofue and V. Rubin, Ann. Rev. Astron. Astrophys., 39, 137–174 (2001); S. J. Asztalos et al., Astrophys. J. Lett., 571, L27–L30 (2002).

    MATH  Google Scholar 

  4. E. I. Gates, G. Gyruk, and M. S. Turner, Astrophys. J. Lett., 449, L123–L126 (1995).

    Article  ADS  Google Scholar 

  5. K. Greisen, Phys. Rev. Lett., 16, 748–750 (1996); G. T. Zatsepin and V. A. Kuz’min, JETP Lett., 4, 78–80 (1966).

    Article  ADS  Google Scholar 

  6. R. D. Peccei and H. R. Quinn, Phys. Rev. Lett., 38, 1440–1443 (1977); S. Weinberg, Phys. Rev. Lett., 40, 223–226 (1978); F. Wilzcek, Phys. Rev. Lett., 40, 279–282 (1978).

    Article  ADS  Google Scholar 

  7. M. Dine, W. Fischler, and M. Srednicki, Phys. Lett. B, 104, 199–202 (1981); A. R. Zhitnitsky, Sov. J. Nucl. Phys., 31, 260 (1980).

    Article  ADS  Google Scholar 

  8. J. E. Kim, Phys. Rev. Lett., 43, 103–107 (1979); M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B, 166, 493–506 (1980).

    Article  ADS  Google Scholar 

  9. J. Abraham et al. (Pierre Auger Collab.), “The cosmic ray energy spectrum and related measurements with the Pierre Auger observatory,” arXiv:0906.2189v2 [astro-ph.HE] (2009).

  10. K. Nakamura et al. (Particle Data Group), J. Phys. G, 37, 075021 (2010); M. Aguilar et al. (AMS Collab.), Phys. Rept., 366, 331–405 (2002); M. Boezio et al. (CAPRICE Collab.), Astrophys. J., 532, 653–669 (2000); M. Ackermann et al. (Fermi LAT Collab.), Phys. Rev. D, 82, 092004 (2010); arXiv:1008.3999v2 [astro-ph.HE] (2010).

    Article  ADS  Google Scholar 

  11. N. Kawanaka, K. Ioka, and M. Nojiri, Astrophys. J., 710, 958–963 (2010).

    Article  ADS  Google Scholar 

  12. A. Casadei and V. Bindi, “The local interstellar spectrum of cosmic ray electrons,” in: Proc. 28th Intl. Cosmic Ray Conference, Universal Academy Press, Tokyo (2003), pp. 2001–2004; arXiv:astro-ph/0305487v2 (2003).

    Google Scholar 

  13. C. Amsler et al. (Particle Data Group), Phys. Lett. B, 667, 1–6 (2008).

    Article  ADS  Google Scholar 

  14. A. Andrianov, P. Giacconi, and R. Soldati, JHEP, 0202, 030 (2002); arXiv:hep-th/0110279v3 (2001).

    Article  ADS  Google Scholar 

  15. A. Andrianov, D. Espriu, P. Giacconi, and R. Soldati, JHEP, 0909, 057 (2009); arXiv:0907.3709v2 [hep-ph] (2009).

    Article  ADS  Google Scholar 

  16. D. Espriu, F. Mescia, and A. Renau, JCAP, 1108, 002 (2011); arXiv:1010.2589v2 [hep-ph] (2010).

    ADS  Google Scholar 

  17. M. S. Longair, High Energy Astrophysics, Cambridge Univ. Press, Cambridge (1994); B. F. Burke and F. Graham-Smith, An Introduction to Radio Astronomy, Cambridge Univ. Press, Cambridge (1997); E. Orlando, “Gamma rays from interactions of cosmic-ray electrons,” Doctoral dissertation, http://www.imprs-astro.mpg.de/Alumni/Orlando-Elena.pdf, Technical Univ., München (2008).

    Google Scholar 

  18. A. Dar and A. De Rújula, Phys. Rept., 466, 179–241 (2008); arXiv:hep-ph/0606199v2 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Espriu.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 170, No. 2, pp. 304–320, February, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espriu, D., Renau, A. Axions and cosmic rays. Theor Math Phys 170, 249–262 (2012). https://doi.org/10.1007/s11232-012-0027-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-012-0027-4

Keywords

Navigation