Skip to main content
Log in

Asymptotic safety of gravity and the Higgs-boson mass

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abtract

If gravity is asymptotically safe, then the ultimate theory might be just the standard model (minimally supplemented by a few light particles to accommodate neutrino masses and oscillations, dark matter, and the baryon asymmetry of the Universe) plus gravity. If this is indeed the case, then the Higgs-boson mass can be predicted (m H = m min ≃ 130 GeV with an uncertainty of only a few GeV) or constrained to be in the interval m min < m H < m max ≃ 174 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, “Ultraviolet divergences in quantum theories of gravitation,” in: General Relativity: An Einstein Centenary Survey (S. W. Hawking and W. Israel, eds.), Cambridge Univ. Press, Cambridge (1979), p. 790–831.

    Google Scholar 

  2. M. Niedermaier and M. Reuter, Living Rev. Rel., 9, 2006-5 (2006).

    Google Scholar 

  3. M. Shaposhnikov, “Is there a new physics between electroweak and Planck scales?,” arXiv:0708.3550v1 [hep-th] (2007).

  4. A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, Ann. Rev. Nucl. Part. Sci., 59, 191–214 (2009); arXiv:0901.0011v2 [hep-ph] (2009).

    Article  ADS  Google Scholar 

  5. C. Wetterich, Nucl. Phys. B, 302, 668–696 (1988).

    Article  ADS  Google Scholar 

  6. C. Wetterich, Nucl. Phys. B, 302, 645–667 (1988).

    Article  ADS  Google Scholar 

  7. C. Wetterich, Phys. Rev. Lett., 90, 231302 (2003); arXiv:hep-th/0210156v2 (2002); 102, 141303 (2009); arXiv:0806.0741v2 [hep-th] (2008); “The cosmological constant and higher dimensional dilatation symmetry,” arXiv:0911.1063v2 [hep-th] (2009).

    Article  MathSciNet  ADS  Google Scholar 

  8. M. E. Shaposhnikov and D. Zenhäusern, Phys. Lett. B, 671, 187–192 (2009); arXiv:0809.3395v2 [hep-th] (2008).

    Article  MathSciNet  ADS  Google Scholar 

  9. M. E. Shaposhnikov and D. Zenhäusern, Phys. Lett. B, 671, 162–166 (2009); arXiv:0809.3406v3 [hep-th] (2008).

    Article  ADS  Google Scholar 

  10. F. L. Bezrukov and M. E. Shaposhnikov, Phys. Lett. B, 659, 703–705 (2008); arXiv:0710.3755v2 [hep-th] (2007).

    ADS  Google Scholar 

  11. S. Weinberg, Phys. Rev. D, 81, 083535 (2010); arXiv:0911.3165v2 [hep-th] (2009).

    Article  ADS  Google Scholar 

  12. M. E. Shaposhnikov and C. Wetterich, Phys. Lett. B, 683, 196–200 (2010); arXiv:0912.0208v2 [hep-th] (2009).

    Article  ADS  Google Scholar 

  13. A. M. Polyakov, Phys. Lett. B, 59, 79–81 (1975); E. Brézin and J. Zinn-Justin, Phys. Rev. Lett., 36, 691–694 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  14. R. Gastmans, R. Kallosh, and C. Truffin, Nucl. Phys. B, 133, 417–434 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  15. S. M. Christensen and M. J. Duff, Phys. Lett. B, 79, 213–216 (1978).

    Article  ADS  Google Scholar 

  16. H. Kawai and M. Ninomiya, Nucl. Phys. B, 336, 115–145 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  17. K. G. Wilson and J. B. Kogut, Phys. Rept., 12, 75–199 (1974).

    Article  ADS  Google Scholar 

  18. J. Ambjørn, J. Jurkiewicz, and R. Loll, Phys. Rev. Lett., 93, 131301 (2004); arXiv:hep-th/0404156v4 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  19. J. Ambjørn, J. Jurkiewicz, and R. Loll, “Quantum gravity as sum over spacetimes,” arXiv:0906.3947v2 [gr-qc] (2009).

  20. J. Polchinski, Nucl. Phys. B, 231, 269–295 (1984).

    Article  ADS  Google Scholar 

  21. C. Wetterich, Phys. Lett. B, 301, 90–94 (1993).

    Article  ADS  Google Scholar 

  22. M. Reuter, Phys. Rev. D, 57, 971–985 (1998); arXiv:hep-th/9605030v1 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Codello, R. Percacci, and C. Rahmede, Ann. Physics, 324, 414–469 (2009); arXiv:0805.2909v4 [hep-th] (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. M. R. Niedermaier, Phys. Rev. Lett., 103, 101303 (2009).

    Article  ADS  Google Scholar 

  25. R. Percacci and D. Perini, Phys. Rev. D, 68, 044018 (2003); arXiv:hep-th/0304222v1 (2003).

    Article  ADS  Google Scholar 

  26. J. E. Daum, U. Harst, and M. Reuter, “Running gauge coupling in asymptotically safe quantum gravity,” arXiv:0910.4938v2 [hep-th] (2009).

  27. G. Narain and R. Percacci, “Renormalization group flow in scalar-tensor theories. I,” arXiv:0911.0386v2 [hep-th] (2009).

  28. S. P. Robinson and F. Wilczek, Phys. Rev. Lett., 96, 231601 (2006); arXiv:hep-th/0509050v2 (2005).

    Article  ADS  Google Scholar 

  29. A. R. Pietrykowski, Phys. Rev. Lett., 98, 061801 (2007); arXiv:hep-th/0606208v4 (2006).

    Article  ADS  Google Scholar 

  30. D. J. Toms, Phys. Rev. D, 76, 045015 (2007); arXiv:0708.2990v1 [hep-th] (2007).

    Article  MathSciNet  ADS  Google Scholar 

  31. D. J. Toms, Phys. Rev. Lett., 101, 131301 (2008); arXiv:0809.3897v1 [hep-th] (2008).

    Article  ADS  Google Scholar 

  32. O. Zanusso, L. Zambelli, G. P. Vacca, and R. Percacci, Phys. Lett. B, 689, 90–94 (2010); arXiv:0904.0938v2 [hep-th] (2009).

    Article  ADS  Google Scholar 

  33. D. Ebert, J. Plefka, and A. Rodigast, Phys. Lett. B, 660, 579–582 (2008); arXiv:0710.1002v2 [hep-th] (2007).

    Article  MathSciNet  ADS  Google Scholar 

  34. K. Nakemura et al. (Particle Data Group), J. Phys. G, 37, 075021 (2010).

    Article  ADS  Google Scholar 

  35. I. L. Shapiro, Class. Q. Grav., 6, 1197–1201 (1989).

    Article  ADS  Google Scholar 

  36. L. Maiani, G. Parisi, and R. Petronzio, Nucl. Phys. B, 136, 115–124 (1978).

    Article  ADS  Google Scholar 

  37. N. Cabibbo, L. Maiani, G. Parisi, and R. Petronzio, Nucl. Phys. B, 158, 295–305 (1979).

    Article  ADS  Google Scholar 

  38. M. Lüscher and P. Weisz, Nucl. Phys. B, 290, 25–60 (1987); T. Papenbrock and C. Wetterich, Z. Phys. C, 65, 519–535 (1995); arXiv:hep-th/9403164v3 (1994).

    Article  ADS  Google Scholar 

  39. M. Lindner, Z. Phys. C, 31, 295–300 (1986).

    Article  ADS  Google Scholar 

  40. N. V. Krasnikov, Sov. J. Nucl. Phys., 28, 549–551 (1978).

    Google Scholar 

  41. P. Q. Hung, Phys. Rev. Lett., 42, 873–876 (1979).

    Article  ADS  Google Scholar 

  42. H. D. Politzer, and S. Wolfram, Phys. Lett. B, 82, 242–246 (1979); Erratum, 83, 421–422 (1979).

    Article  ADS  Google Scholar 

  43. F. Bezrukov and M. E. Shaposhnikov, JHEP, 0907, 089 (2009); arXiv:0904.1537v2 [hep-ph] (2009).

    Article  ADS  Google Scholar 

  44. J. R. Espinosa, G. F. Giudice, and A. Riotto, JCAP, 0805, 002 (2008); arXiv:0710.2484v1 [hep-ph] (2007).

    ADS  Google Scholar 

  45. J. Ellis, J. R. Espinosa, G. F. Giudice, A. Hoecker, and A. Riotto, Phys. Lett. B, 679, 369–375 (2009); arXiv:0906.0954v2 [hep-ph] (2009).

    Article  ADS  Google Scholar 

  46. G. Altarelli and G. Isidori, Phys. Lett. B, 337, 141–144 (1994).

    Article  ADS  Google Scholar 

  47. J. A. Casas, J. R. Espinosa, and M. Quirós, Phys. Lett. B, 342, 171–179 (1995); arXiv:hep-ph/9409458v1 (1994).

    Article  ADS  Google Scholar 

  48. J. A. Casas, J. R. Espinosa, and M. Quirós, Phys. Lett. B, 382, 374–382 (1996); arXiv:hep-ph/9603227v1 (1996).

    Article  ADS  Google Scholar 

  49. T. Hambye and K. Riesselmann, Phys. Rev. D, 55, 7255–7262 (1997); arXiv:hep-ph/9610272v1 (1996).

    Article  ADS  Google Scholar 

  50. L. Griguolo and R. Percacci, Phys. Rev. D, 52, 5787–5796 (1995); arXiv:hep-th/9504092v1 (1995).

    Article  ADS  Google Scholar 

  51. M. X. Luo and Y. Xiao, Phys. Rev. Lett., 90, 011601 (2003); arXiv:hep-ph/0207271v2 (2002).

    Article  ADS  Google Scholar 

  52. C. D. Froggatt and H. B. Nielsen, Phys. Lett. B, 368, 96–102 (1996); arXiv:hep-ph/9511371v1 (1995).

    Article  ADS  Google Scholar 

  53. F. L. Bezrukov, A. Magnin, and M. Shaposhnikov, Phys. Lett. B, 675, 88–92 (2009); arXiv:0812.4950v2 [hep-ph] (2008).

    Article  ADS  Google Scholar 

  54. A. De Simone, M. P. Hertzberg, and F. Wilczek, Phys. Lett. B, 678, 1–8 (2009); arXiv:0812.4946v3 [hep-ph] (2008).

    Article  ADS  Google Scholar 

  55. A. O. Barvinsky, A. Yu. Kamenshchik, C. Kiefer, A. A. Starobinsky, and C. Steinwachs, JCAP, 0912, 003 (2009); arXiv:0904.1698v2 [hep-ph] (2009).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Shaposhnikov.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 170, No. 2, pp. 280–291, February, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaposhnikov, M.E. Asymptotic safety of gravity and the Higgs-boson mass. Theor Math Phys 170, 229–238 (2012). https://doi.org/10.1007/s11232-012-0025-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-012-0025-6

Keywords

Navigation