Skip to main content
Log in

Cosmological density perturbations in a conformal scalar field theory

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a scenario in which primordial scalar perturbations are generated when a complex conformal scalar field rolls down its negative quartic potential. Initially, these are perturbations of the phase of this field, which are then converted into adiabatic perturbations of the density. The existence of perturbations in the radial field direction, which have a red power spectrum, is a potentially dangerous feature of this scenario. But we show that in the linear order in the small parameter, the self-coupling, the infrared effects are completely nullified by an appropriate field redefinition. We evaluate the statistical anisotropy inherent in the model because of the presence of the long-wave perturbations of the radial field component. In the linear order in the self-coupling, the infrared effects do not affect the statistical anisotropy. They are manifested only at the quadratic order in the self-coupling, weakly (logarithmically) enhancing the corresponding contribution to the statistical anisotropy. The resulting statistical anisotropy is a combination of a large term, which decreases as the momentum increases, and a momentum-independent nonamplified term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Komatsu et al., Astrophys. J. (Suppl.), 192, 18 (2011); arXiv:1001.4538v3 [astro-ph.CO] (2010).

    Article  ADS  Google Scholar 

  2. A. A. Starobinsky, JETP Lett., 30, 682–685 (1979); Phys. Lett. B, 91, 99–102 (1980); A. H. Guth, Phys. Rev. D, 23, 347–356 (1981); A. D. Linde, Phys. Lett. B, 108, 389–393 (1982); 129, 177–181 (1983); A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett., 48, 1220–1223 (1982).

    ADS  Google Scholar 

  3. V. F. Mukhanov and G. V. Chibisov, JETP Lett., 33, 532–535 (1981); S. W. Hawking, Phys. Lett. B, 115, 295–297 (1982); A. A. Starobinsky, Phys. Lett. B, 117, 175–178 (1982); A. H. Guth and S.-Y. Pi, Phys. Rev. Lett., 49, 1110–1113 (1982); J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys. Rev. D, 28, 679–693 (1983).

    ADS  Google Scholar 

  4. J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, Phys. Rev. D, 64, 123522 (2001); arXiv:hep-th/ 0103239v3 (2001); J. Khoury, B. A. Ovrut, N. Seiberg, P. J. Steinhardt, and N. Turok, Phys. Rev. D, 65, 086007 (2002); arXiv:hep-th/0108187v4 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  5. P. Creminelli, M. A. Luty, A. Nicolis, and L. Senatore, JHEP, 0612, 080 (2006); arXiv:hep-th/0606090v2 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  6. J. L. Lehners, P. McFadden, N. Turok, and P. J. Steinhardt, Phys. Rev. D, 76, 103501 (2007); arXiv:hep-th/ 0702153v1 (2007); E. I. Buchbinder, J. Khoury, and B. A. Ovrut, Phys. Rev. D, 76, 123503 (2007); arXiv:hepth/ 0702154v4 (2007); P. Creminelli and L. Senatore, JCAP, 0711, 010 (2007); arXiv:hep-th/0702165v2 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Notari and A. Riotto, Nucl. Phys. B, 644, 371–382 (2002); arXiv:hep-th/0205019v2 (2002); F. Di Marco, F. Finelli, and R. Brandenberger, Phys. Rev. D, 67, 063512 (2003); arXiv:astro-ph/0211276v2 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. D. Wands, Phys. Rev. D, 60, 023507 (1999); arXiv:gr-qc/9809062v2 (1998); F. Finelli and R. Brandenberger, Phys. Rev. D, 65, 103522 (2002); arXiv:hep-th/0112249v2 (2001); L. E. Allen and D. Wands, Phys. Rev. D, 70, 063515 (2004); arXiv:astro-ph/0404441v3 (2004); R. H. Brandenberger, “Cosmology of the very early universe,” arXiv:1003.1745v1 [hep-th] (2010).

    Article  ADS  Google Scholar 

  9. S. Mukohyama, JCAP, 0906, 001 (2009); arXiv:0904.2190v4 [hep-th] (2009).

    ADS  Google Scholar 

  10. P. Creminelli, A. Nicolis, and E. Trincherini, JCAP, 1011, 021 (2010); arXiv:1007.0027v2 [hep-th] (2010).

    ADS  Google Scholar 

  11. V. A. Rubakov, JCAP, 0909, 030 (2009); arXiv:0906.3693v1 [hep-th] (2009).

    ADS  Google Scholar 

  12. J. K. Erickson, D. H. Wesley, P. J. Steinhardt, and N. Turok, Phys. Rev. D, 69, 063514 (2004); arXiv:hep-th/ 0312009v2 (2003); D. Garfinkle, W. C. Lim, F. Pretorius, and P. J. Steinhardt, Phys. Rev. D, 78, 083537 (2008); arXiv:0808.0542v2 [hep-th] (2008).

    Article  MathSciNet  ADS  Google Scholar 

  13. J. L. Lehners, Phys. Rept., 465, 223–263 (2008); arXiv:0806.1245v2 [astro-ph] (2008).

    Article  MathSciNet  ADS  Google Scholar 

  14. V. A. Rubakov and M. A. Osipov, JETP Lett., 93, 52–55 (2011); arXiv:1007.3417v1 [hep-th] (2010).

    Article  ADS  Google Scholar 

  15. L. Ackerman, S. M. Carroll, and M. B. Wise, Phys. Rev. D, 75, 083502 (2007); Erratum, 80, 069901 (2009); arXiv:astro-ph/0701357v5 (2007); A. R. Pullen and M. Kamionkowski, Phys. Rev. D, 76, 103529 (2007); arXiv:0709.1144v2 [astro-ph] (2007).

    Article  ADS  Google Scholar 

  16. M.-A. Watanabe, S. Kanno, and J. Soda, Phys. Rev. Lett., 102, 191302 (2009); arXiv:0902.2833v2 [hep-th] (2009); Prog. Theor. Phys., 123, 1041–1068 (2010); arXiv:1003.0056v2 [astro-ph.CO] (2010); T. R. Dulaney and M. I. Gresham, Phys. Rev. D, 81, 103532 (2010); arXiv:1001.2301v4 [astro-ph.CO] (2010); A. E. Gümrükçüoǧlu, B. Himmetoglu, and M. Peloso, Phys. Rev. D, 81, 063528 (2010); arXiv:1001.4088v1 [astro-ph.CO] (2010).

    Article  ADS  Google Scholar 

  17. A. E. Gümrükçüoǧlu, C. R. Contaldi, and M. Peloso, “CMB anomalies from relic anisotropy,” in: Proc. 11th Marcel Grossmann Meeting on General Relativity (23–29 July 2006, Berlin, H. Kleinert, R. T. Jantzen, and R. Ruffini, eds.), World Scientific, Singapore (2008); arXiv:astro-ph/0608405v2 (2006); JCAP, 0711, 005 (2007); arXiv:0707.4179v2 [astro-ph] (2007).

  18. D. Polarski and A. A. Starobinsky, Class. Q. Grav., 13, 377–391 (1996); arXiv:gr-qc/9504030v2 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. A. D. Linde and V. F. Mukhanov, Phys. Rev. D, 56, R535–R539 (1997); arXiv:astro-ph/9610219v2 (1996); K. Enqvist and M. S. Sloth, Nucl. Phys. B, 626, 395–409 (2002); arXiv:hep-ph/0109214v3 (2001); D. H. Lyth and D. Wands, Phys. Lett. B, 524, 5–14 (2002); arXiv:hep-ph/0110002v2 (2001); T. Moroi and T. Takahashi, Phys. Lett. B, 522, 215–221 (2001); Erratum, 539, 303–303 (2002); arXiv:hep-ph/0110096v3 (2001).

    Article  ADS  Google Scholar 

  20. K. Dimopoulos, D. H. Lyth, A. Notari, and A. Riotto, JHEP, 0307, 053 (2003); arXiv:hep-ph/0304050v3 (2003).

    Article  ADS  Google Scholar 

  21. G. Dvali, A. Gruzinov, and M. Zaldarriaga, Phys. Rev. D, 69, 023505 (2004); arXiv:astro-ph/0303591v1 (2003); L. Kofman, “Probing string theory with modulated cosmological fluctuations,” arXiv:astro-ph/0303614v2 (2003).

    Article  ADS  Google Scholar 

  22. G. Dvali, A. Gruzinov, and M. Zaldarriaga, Phys. Rev. D, 69, 083505 (2004); arXiv:astro-ph/0305548v1 (2003).

    Article  ADS  Google Scholar 

  23. F. Vernizzi, Phys. Rev. D, 69, 083526 (2004); arXiv:astro-ph/0311167v3 (2003).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Libanov.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 170, No. 2, pp. 188–205, February, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libanov, M.V., Rubakov, V.A. Cosmological density perturbations in a conformal scalar field theory. Theor Math Phys 170, 151–165 (2012). https://doi.org/10.1007/s11232-012-0017-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-012-0017-6

Keywords

Navigation