Skip to main content
Log in

Chirality-violating condensates in QCD and their connection with zero-mode solutions of quark dirac equations

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We demonstrate that chirality-violating condensates in massless QCD arise entirely from zero-mode solutions of the Dirac equation in arbitrary gluon fields. We propose a model in which the zero-mode solutions are the ones for quarks moving in the instanton field and calculate the quark condensate magnetic susceptibilities χ of dimension three and κ and ξ of dimension five based on this model. The good correspondence of the values of χ, κ, and ξ obtained using this approach with the values found from the hadronic spectrum is a serious argument that instantons are the only source of chirality-violating condensates in QCD. We discuss the temperature dependence of the quark condensate and show that the phase transition corresponding to the temperature dependence α(T) of the quark condensate as an order parameter is a crossover-type transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. L. Ioffe, Nucl. Phys. B, 188, 317–341 (1981); Erratum, 191, 591–592 (1981).

    Article  ADS  Google Scholar 

  2. B. L. Ioffe, Phys. Lett. B, 678, 512–515 (2009); arXiv:0906.0283v1 [hep-ph] (2009).

    Article  ADS  Google Scholar 

  3. B. L. Ioffe, Phys. Usp., 49, 1077–1078 (2006); arXiv:hep-ph/0601250v1 (2006).

    Article  ADS  Google Scholar 

  4. M. Shifman, ed., Instantons in Gauge Theories, World Scientific, River Edge, N. J. (1994).

    Google Scholar 

  5. B. L. Ioffe, V. S. Fadin, and L. N. Lipatov, Quantum Chromodynamics: Perturbative and Nonperturbative Aspects (Cambridge Monogr. Part. Phys., Nucl. Phys., and Cosmol., Vol. 30), Cambridge Univ. Press, Cambridge (2010).

    Google Scholar 

  6. A. I. Vainshtein, V. I. Zakharov, V. A. Novikov, and M. A. Shifman, Sov. Phys. Usp., 25, 195–215 (1982).

    Article  ADS  Google Scholar 

  7. T. Banks and A. Casher, Nucl. Phys. B, 169, 103–125 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  8. L. S. Brown, R. Carlitz, and C. Lee, Phys. Rev. D, 16, 417–422 (1977).

    Article  ADS  Google Scholar 

  9. R. Jackiw and C. Rebbi, Phys. Rev. D, 16, 1052–1060 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  10. D. I. Diakonov and V. Yu. Petrov, Phys. Lett. B, 147, 351–356 (1984).

    Article  ADS  Google Scholar 

  11. T. Schäfer and E. V. Shuryak, Rev. Modern Phys., 70, 323–425 (1998); arXiv:hep-ph/9610451v3 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  12. B. L. Ioffe, Z. Phys. C, 18, 67–68 (1983).

    Article  ADS  Google Scholar 

  13. B. L. Ioffe, Phys. Atomic Nuclei, 72, 1214–1221 (2009); arXiv:0810.4234v3 [hep-ph] (2008).

    Article  ADS  Google Scholar 

  14. B. L. Ioffe, Prog. Part. Nucl. Phys., 56, 232–277 (2006); arXiv:hep-ph/0502148v2 (2005).

    Article  ADS  Google Scholar 

  15. V. M. Belyaev, and B. L. Ioffe, Sov. Phys. JETP, 56, 493–501 (1982).

    Google Scholar 

  16. G. ’t Hooft, Phys. Rev. D, 14, 3432–3450 (1976).

    Article  ADS  Google Scholar 

  17. M. V. Polyakov and C. Weiss, Phys. Lett. B, 387, 841–847 (1996); arXiv:hep-ph/9607244v1 (1996).

    Article  ADS  Google Scholar 

  18. B. L. Ioffe and A. V. Smilga, Nucl. Phys. B, 232, 109–142 (1984).

    Article  ADS  Google Scholar 

  19. V. M. Belyaev and I. I. Kogan, Sov. J. Nucl. Phys., 40, 659 (1984).

    Google Scholar 

  20. I. I. Balitsky, A. V. Kolesnichenko, and A. V. Yung, Sov. J. Nucl. Phys., 41, 178 (1985).

    Google Scholar 

  21. P. Ball, V. M. Braun, and N. Kivel, Nucl. Phys. B, 649, 263–296 (2003); arXiv:hep-ph/0207307v1 (2002).

    Article  ADS  Google Scholar 

  22. J. Rohrwild, JHEP, 0709, 073 (2007); arXiv:0708.1405v2 [hep-ph] (2007).

    Article  ADS  Google Scholar 

  23. H.-C. Kim, M. Mussakhanov, and M. Siddikov, Phys. Lett. B, 608, 95–106 (2005); arXiv:hep-ph/0411181v1 (2004).

    Article  ADS  Google Scholar 

  24. I. I. Kogan and D. Wyler, Phys. Lett. B, 274, 100–110 (1992).

    Article  ADS  Google Scholar 

  25. J. Pasupathy, J. P. Singh, S. L. Wilson, and C. B. Chiu, Phys. Rev. D, 36, 1442–1450 (1987).

    Article  ADS  Google Scholar 

  26. M. A. Shifman, A. V. Vainshtein, and V. I. Zakharov, Nucl. Phys. B, 163, 46–56 (1980).

    Article  ADS  Google Scholar 

  27. D. J. Gross, R. D. Pisarski, and L. G. Yaffe, Rev. Modern Phys., 53, 43–80 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  28. L. D. Landau and E. M. Lifshitz, Theoretical Physics [in Russian], Vol. 5, Statistical Physics: Part 1, Nauka, Moscow (1976); English transl., Pergamon, Oxford (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Ioffe.

Additional information

Dedicated to the memory of Albert Nikiforovich Tavkhelidze, my friend, an outstanding physicist, and a great organizer of science in the USSR and Russia.

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 170, No. 2, pp. 165–173, February, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioffe, B.L. Chirality-violating condensates in QCD and their connection with zero-mode solutions of quark dirac equations. Theor Math Phys 170, 132–138 (2012). https://doi.org/10.1007/s11232-012-0015-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-012-0015-8

Keywords

Navigation