Skip to main content

Superdense dark matter clumps from superheavy particles


We describe some specific but reasonable conditions for the formation of superdense clumps (or minihalos) of dark matter. Such clumps can be produced by several mechanisms, most notably by spiky features in the spectrum of density perturbations. Being produced very early during the radiation-dominated epoch, these clumps evolve as isolated objects. They do not belong to hierarchical structures for a long time after production and are therefore not destroyed by tidal interactions during the formation of larger structures. If the clumps are constituted of superheavy dark matter particles, then the evolution of their central part can lead to a “gravithermal catastrophe,” increasing the central density and thus the annihilation signal. As a result, annihilations of superheavy neutralinos in dense clumps may lead to observable fluxes of annihilation products in the form of ultrahigh-energy particles.

This is a preview of subscription content, access via your institution.


  1. K. Griest and M. Kamionkowski, Phys. Rev. Lett., 64, 615–618 (1990); L. Hui, Phys. Rev. Lett., 86, 3467–3470 (2001).

    Article  ADS  Google Scholar 

  2. V. Berezinsky, M. Kachelrieß, and A. Vilenkin, Phys. Rev. Lett., 79, 4302–4305 (1997); arXiv:astro-ph/9708217v1 (1997).

    Article  ADS  Google Scholar 

  3. V. A. Kuzmin and V. A. Rubakov, Sov. J. Nucl. Phys., 61, 1028 (1998).

    Google Scholar 

  4. D. J.H. Chung, E. W. Kolb, and A. Riotto, Phys. Rev. D, 59, 023501 (1999); V. Kuzmin and I. Tkachev, JETP Lett., 68, 271–275 (1998); arXiv:hep-ph/9802304v1 (1998); D. H. Lyth and D. Roberts, Phys. Rev. D, 57, 7120–7129 (1998); arXiv:hep-ph/9609441v1 (1996).

    Article  ADS  Google Scholar 

  5. V. Berezinsky, M. Kachelrié, and M. Aa. Solberg, Phys. Rev. D, 78, 123535 (2008); arXiv:0810.3012v2 [hep-ph] (2008).

    Article  ADS  Google Scholar 

  6. P. Blasi, R. Dick, and E. W. Kolb, Astropart. Phys., 18, 57–66 (2002); arXiv:astro-ph/0105232v3 (2001).

    Article  ADS  Google Scholar 

  7. E. W. Kolb and I. I. Tkachev, Phys. Rev. D, 50, 769–773 (1994); arXiv:astro-ph/9403011v1 (1994).

    Article  ADS  Google Scholar 

  8. P. Scott and S. Sivertsson, Phys. Rev. Lett., 103, 211301 (2009); arXiv:0908.4082v5 [astro-ph.CO] (2009).

    Article  ADS  Google Scholar 

  9. J. Yokoyama, Astron. Astrophys., 318, 673–679 (1997).

    ADS  Google Scholar 

  10. J. Garcia-Bellido, A. D. Linde, and D. Wands, Phys. Rev. D, 54, 6040–6058 (1996); arXiv:astro-ph/9605094v3 (1996).

    Article  ADS  Google Scholar 

  11. C. Schmid, D. J. Schwarz, and P. Widerin, Phys. Rev. D, 59, 043517 (1999).

    Article  ADS  Google Scholar 

  12. V. S. Berezinsky, A. V. Gurevich, and K. P. Zybin, Phys. Lett. B, 294, 221–228 (1992).

    Article  ADS  Google Scholar 

  13. V. Berezinsky, A. Bottino, and G. Mignola, Phys. Lett. B, 391, 355–359 (1997).

    Article  ADS  Google Scholar 

  14. R. Aloisio, V. Berezinsky, and M. Kachelrié, Phys. Rev. D, 69, 094023 (2004).

    Article  ADS  Google Scholar 

  15. N. Seto and A. Cooray, Phys. Rev. D, 70, 063512 (2004); arXiv:astro-ph/0405216v1 (2004).

    Article  ADS  Google Scholar 

  16. P. Tricarico, Class. Q. Grav., 26, 085003 (2009).

    Article  ADS  Google Scholar 

  17. A. W. Adams and J. S. Bloom, “Direct detection of dark matter with space-based laser interferometers,” arXiv:astro-ph/0405266v2 (2004).

  18. V. Berezinsky, V. Dokuchaev, Yu. Eroshenko, M. Kachelrié, and M. Aa. Solberg, Phys. Rev. D, 81, 103529 (2010); arXiv:1002.3444v2 [astro-ph.CO] (2010); Phys. Rev. D, 81, 103530 (2010); arXiv:1002.3445v2 [astroph. GA] (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yu. N. Eroshenko.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 170, No. 1, pp. 102–109, January, 2012.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Berezinsky, V.S., Dokuchaev, V.I., Eroshenko, Y.N. et al. Superdense dark matter clumps from superheavy particles. Theor Math Phys 170, 83–89 (2012).

Download citation

  • Published:

  • Issue Date:

  • DOI:


  • dark matter
  • neutralino
  • cosmology
  • cosmic ray