Skip to main content
Log in

Generalized relativistic kinematics

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose a method for deforming an extended Galilei algebra that leads to a nonstandard realization of the Poincaré group with the Fock-Lorentz linear fractional transformations. The invariant parameter in these transformations has the dimension of length. Combining this deformation with the standard one (with an invariant velocity c) leads to the algebra of the symmetry group of the anti-de Sitter space in Beltrami coordinates. In this case, the action for free point particles contains the dimensional constants R and c. The limit transitions lead to the ordinary (R → ) or alternative (c → ) but nevertheless relativistic kinematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Galilei, “Dialogue about the two major world systems — Ptolemeic and Copernican [in Russian],” in: Selected Works, Vol. 1, Nauka, Moscow (1964), pp. 109–586.

    Google Scholar 

  2. W. von Ignatowsky, Phys. Z., 11, 972–976 (1910).

    Google Scholar 

  3. W. von Ignatowsky, Arch. Math. Phys., 17, 1–24 (1910).

    MATH  Google Scholar 

  4. P. Frank and H. Rothe, Ann. Phys., 339, 825–855 (1911).

    Article  Google Scholar 

  5. V. Fock, The Theory of Space, Time, and Gravitation [in Russian], Fizmatgiz, Moscow (1961); English transl., Pergamon, Oxford (1963).

    Google Scholar 

  6. S. N. Manida, “Fock-Lorentz transformations and time-varying speed of light,” arXiv:gr-qc/9905046v1 (1999).

  7. S. N. Manida, Vestnik St.-Petersburg. Gos. Univ. Ser. 4: Fizika, khimiya, 2, 3–17 (2001).

    Google Scholar 

  8. S. S. Stepanov, “Fundamental physical constants and the principle of parametric incompleteness,” arXiv: physics/9909009v1 (1999).

  9. S. S. Stepanov, Phys. Rev. D, 62, 023507 (2000); arXiv:astro-ph/9909311v2 (1999).

    Article  ADS  Google Scholar 

  10. J. Magueijo, Phys. Rev. D, 62, 103521 (2000); arXiv:gr-qc/0007036v1 (2000).

    Article  ADS  Google Scholar 

  11. O. Jahn and V. V. Sreedhar, Am. J. Phys., 69, 1039–1043 (2001); arXiv:math-ph/0102011v2 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. J. Magueijo and L. Smolin, Phys. Rev. Lett., 88, 190403 (2002); arXiv:hep-th/0112090v2 (2001).

    Article  ADS  Google Scholar 

  13. H.-Y. Guo, Sci. China Ser. A, 51, 568–603 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  14. H.-Y. Guo, C.-G. Huang, Y. Tian, Z. Xu, and B. Zhou, “On de Sitter invariant special relativity and cosmological constant as origin of inertia,” arXiv:hep-th/0405137v3 (2004).

  15. H.-Y. Guo, C.-G. Huang, H.-T. Wu, and B. Zhou, “The principle of relativity, kinematics, and algebraic relations,” arXiv:0812.0871v2 [hep-th] (2008).

  16. H.-Y. Guo, H.-T. Wu, and B. Zhou, Phys. Lett. B, 670, 437–441 (2009); arXiv:0809.3562v2 [math-ph] (2008).

    Article  ADS  MathSciNet  Google Scholar 

  17. H.-Y. Guo, C.-G. Huang, Y. Tian, Z. Xu, and B. Zhou, Class. Q. Grav., 24, 4009–4035 (2007); arXiv:gr-qc/0703078v2 (2007).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. H.-Y. Guo, C.-G. Huang, Y. Tian, Z. Xu, and B. Zhou, Front. Phys. China, 2, 358–363 (2007); arXiv:hep-th/0607016v2 (2006).

    Article  ADS  Google Scholar 

  19. H.-Y. Guo, “The Beltrami model of De Sitter space: From Snyder’s quantized space-time to de Sitter invariant relativity,” arXiv:hep-th/0607017v1 (2006).

  20. L. O’Raifeartaigh and V. V. Sreedhar, Ann. Phys., 293, 215–227 (2001); arXiv:hep-th/0007199v3 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. U. Niederer, Helv. Phys. Acta, 45, 802–810 (1972).

    MathSciNet  Google Scholar 

  22. C. R. Hagen, Phys. Rev. D, 5, 377–388 (1972).

    Article  ADS  Google Scholar 

  23. R. Jackiw, Phys. Today, 25, 23–29 (1972).

    Article  Google Scholar 

  24. R. Jackiw, Ann. Phys., 129, 183–200 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  25. C. Duval and P. A. Horvathy, “Conformal Galilei groups, Veronese curves, and Newton-Hooke spacetimes,” arXiv:1104.1502v3 (2011).

  26. R. Aldrovandi and J. G. Pereira, “A second Poincaré group,” arXiv:gr-qc/9809061v1 (1998).

  27. E. Inonu and E. P. Wigner, Proc. Natl. Acad. Sci. USA, 39, 510–524 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  28. E. Inonu and E. P. Wigner, Proc. Natl. Acad. Sci. USA, 40, 119–121 (1954).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Manida.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 169, No. 2, pp. 323–336, November, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manida, S.N. Generalized relativistic kinematics. Theor Math Phys 169, 1643–1655 (2011). https://doi.org/10.1007/s11232-011-0141-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-011-0141-8

Keywords

Navigation