Skip to main content
Log in

Bose-Einstein condensation in the excited band and the energy spectrum of the Bose-Hubbard model

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Based on the mean field approximation, we investigate the transition into the Bose-Einstein condensate phase in the Bose-Hubbard model with two local states and boson hopping in only the excited band. In the hard-core boson limit, we study the instability associated with this transition, which appears at excitation energies δ < |t 0 |, where |t 0 | is the particle hopping parameter. We discuss the conditions under which the phase transition changes from second to first order and present the corresponding phase diagrams (Θ,µ) and (|t 0 |, µ), where Θ is the temperature and µ is the chemical potential. Separation into the normal and Bose-Einstein condensate phases is possible at a fixed average concentration of bosons. We calculate the boson Green’s function and one-particle spectral density using the random phase approximation and analyze changes in the spectrum of excitations of the “particle” or “hole” type in the region of transition from the normal to the Bose-Einstein condensate phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Phys. Rev. B, 40, 546–570 (1989).

    Article  ADS  Google Scholar 

  2. M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature, 415, 39–44 (2002).

    Article  ADS  Google Scholar 

  3. M. Greiner, O. Mandel, T. W. Hänsch, and I. Bloch, Nature, 419, 51–54 (2002); arXiv:cond-mat/0207196v1 (2002).

    Article  ADS  Google Scholar 

  4. M. Nishijima, H. Okuyama, N. Takagi, T. Aruga, and W. Brenig, Surf. Sci. Rep., 57, 113–156 (2005).

    Article  ADS  Google Scholar 

  5. P. D. Reilly, R. A. Harris, and K. B. Whaley, J. Chem. Phys., 95, 8599–8615 (1991).

    Article  ADS  Google Scholar 

  6. T. S. Mysakovych, V. O. Krasnov, and I. V. Stasyuk, Ukrainian J. Phys., 55, 228–234 (2010).

    Google Scholar 

  7. K. Sheshadri, H. R. Krishnamurthy, R. Pandit, and T. V. Ramakrishnan, Europhys. Lett., 22, 257–264 (1993).

    Article  ADS  Google Scholar 

  8. S. Konabe, T. Nikuni, and M. Nakamura, Phys. Rev. A, 73, 033621 (2006); arXiv:cond-mat/0407229v2 (2004).

    Article  ADS  Google Scholar 

  9. Y. Ohashi, M. Kitaura, and H. Matsumoto, Phys. Rev. A, 73, 033617 (2006); arXiv:cond-mat/0510725v2 (2005).

    Article  ADS  Google Scholar 

  10. M. Iskin and J. K. Freericks, Phys. Rev. A, 79, 053634 (2009); arXiv:0903.0845v1 [cond-mat.str-el] (2009).

    Article  ADS  Google Scholar 

  11. B. Capogrosso-Sansone, Ş. G. Söyler, N. Prokof’ev, and B. Svistunov, Phys. Rev. A, 77, 015602 (2008); arXiv:0710.2703v3 [cond-mat.other] (2007).

    Article  ADS  Google Scholar 

  12. K. Byczuk and D. Vollhardt, Phys. Rev. B, 77, 235106 (2008); arXiv:0706.0839v2 [cond-mat.other] (2007).

    Article  ADS  Google Scholar 

  13. M. J. Puska and R. M. Nieminen, Surf. Sci., 157, 413–435 (1985).

    Article  ADS  Google Scholar 

  14. W. Brenig, Surf. Sci., 291, 207–214 (1993).

    Article  ADS  Google Scholar 

  15. T. Müller, S. Fölling, A. Widera, and I. Bloch, Phys. Rev. Lett., 99, 200405 (2007); arXiv:0704.2856v1 [condmat. other] (2007).

    Article  Google Scholar 

  16. A. Isacsson and S. M. Girvin, Phys. Rev. A, 72, 053604 (2005); arXiv:cond-mat/0506622v1 (2005).

    Article  ADS  Google Scholar 

  17. J. Hubbard, Proc. Roy. Soc. London A, 285, 542–560 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  18. W. V. Liu and C. Wu, Phys. Rev. A, 74, 013607 (2006); arXiv:cond-mat/0601432v3 (2006).

    Article  ADS  Google Scholar 

  19. J.-B. Bru and T. C. Dorlas, J. Statist. Phys., 113, 177–196 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Dorlas, L. Pastur, and V. Zagrebnov, J. Statist. Phys., 124, 1137–1178 (2006); arXiv:math-ph/0603047v1 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Modern Phys., 62, 113–171 (1990).

    Article  ADS  Google Scholar 

  22. N. N. Bogolyubov and S. V. Tyablikov, Soviet Phys. Dokl., 4, 589–593 (1959).

    ADS  MATH  Google Scholar 

  23. I. V. Stasyuk and O. V. Velychko, Condens. Matter Phys., 14, 1–14 (2011); arXiv:1103.5662v1 [cond-mat.quantgas] (2011).

    Google Scholar 

  24. C. Menotti and N. Trivedi, Phys. Rev. B, 77, 235120 (2008); arXiv:0801.4672v1 [cond-mat.other] (2008).

    Article  ADS  Google Scholar 

  25. R. Sensarma, K. Sengupta, and S. Das Sarma, Phys. Rev. B, 84, 081101(R) (2011); arXiv:1102.0780v1 [condmat. quant-gas] (2011).

    ADS  Google Scholar 

  26. R. V. Pai, K. Sheshadri, and R. Pandit, Phys. Rev. B, 77, 014503 (2008); arXiv:0705.2080v1 [cond-mat.statmech] (2007).

    Article  ADS  Google Scholar 

  27. J. Larson, A. Collin, and J.-P. Martikainen, Phys. Rev. A, 79, 033603 (2009); arXiv:0811.1537v2 [condmat. other] (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Velychko.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 168, No. 3, pp. 571–583, September, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stasyuk, I.V., Velychko, O.V. Bose-Einstein condensation in the excited band and the energy spectrum of the Bose-Hubbard model. Theor Math Phys 168, 1347–1357 (2011). https://doi.org/10.1007/s11232-011-0110-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-011-0110-2

Keywords

Navigation