Advertisement

Theoretical and Mathematical Physics

, Volume 167, Issue 2, pp 628–635 | Cite as

Wigner functions for the Landau problem in noncommutative quantum mechanics

  • S. Dulat
  • Kang LiEmail author
  • Jianhua Wang
Article

Abstract

We study the Wigner function in noncommutative quantum mechanics. By solving the time-independent Schrödinger equation on both a noncommutative space and a noncommutative phase space, we obtain the Wigner function for the Landau problem on those spaces.

Keywords

Wigner function noncommutative quantum mechanics Landau problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Chaichian, M. M. Sheikh-Jabbari, and A. Tureanu, Phys. Rev. Lett., 86, 2716–2719 (2001); arXiv:hep-th/0010175v2 (2000); M. Chaichian, A. Demichev, P. Prešnajder, M. M. Sheikh-Jabbari, and A. Tureanu, Nucl. Phys. B, 611, 383–402 (2001); arXiv:hep-th/0101209v2 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    M. Chaichian, P. Prešnajder, M. M. Sheikh-Jabbari, and A. Tureanu, Phys. Lett. B, 527, 149–154 (2002); arXiv:hep-th/0012175v2 (2000); H. Falomir, J. Gamboa, M. Loewe, F. Mendez, and J. C. Rojas, Phys. Rev. D, 66, 045018 (2002); arXiv:hep-th/0203260v3 (2002).MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    K. Li and S. Dulat, Eur. Phys. J. C, 46, 825–828 (2006); arXiv:hep-th/0508193v3 (2005).MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    B. Mirza and M. Zarei, Eur. Phys. J. C, 32, 583–586 (2004); arXiv:hep-th/0311222v1 (2003); K. Li and J. Wang, Eur. Phys. J. C, 50, 1007–1011 (2007); arXiv:hep-th/0608100v1 (2006).MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    B. Mirza, R. Narimani, and M. Zarei, Eur. Phys. J. C, 48, 641–645 (2006); arXiv:hep-th/0610323v1 (2006); S. Dulat and K. Li, Eur. Phys. J. C, 54, 333–337 (2008); arXiv:0802.1243v1 [math-ph] (2008).MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    J. Gamboa, F. Méndez, M. Loewe, and J. C. Rojas, Modern Phys. Lett. A, 16, 2075–2078 (2001); arXiv:hep-th/0104224v4 (2001); P. A. Horváthy, Ann. Phys., 299, 128–140 (2002); arXiv:hep-th/0201007v4 (2002); Ö. F. Dayi and L. T. Kelleyane, Modern Phys. Lett. A, 17, 1937–1944 (2002); arXiv:hep-th/0202062v1 (2002); S. Dulat and K. Li, Chin. Phys. C, 32, 92–95 (2008); P. R. Giri and P. Roy, Eur. Phys. J. C, 57, 835–839 (2008); arXiv:0803.4090v2 [hep-th] (2008).MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    J. Wang and K. Li, J. Phys. A, 40, 2197–2202 (2007); arXiv:0708.0783v1 [hep-th] (2007); S. Dulat, K. Li, and J. Wang, J. Phys. A, 41, 065303 (2008); arXiv:0802.1116v1 [math-ph] (2008); Chin. Phys. B, 17, 1716–1719 (2008).MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Ö. F. Dayi and A. Jellal, J. Math. Phys., 43, 4592–4601 (2002); Erratum, 45, 827 (2004); arXiv:hep-th/0111267v2 (2001); A. Kokado, T. Okamura, and T. Saito, “Hall effect in Noncommutative spaces,” arXiv:hep-th/0307120v2 (2003); B. Basu and S. Ghosh, Phys. Lett. A, 346, 133–140 (2005); arXiv:cond-mat/0503266v3 (2005); B. Harms and O. Micu, J. Phys. A, 40, 10337–10347 (2007); arXiv:hep-th/0610081v3 (2006); A. L. Carey, K. Hannabuss, and V. Mathai, J. Geom. Symmetry Phys., 6, 16–37 (2006); arXiv:math/0008115v2 (2000).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    S. Dulat and K. Li, Eur. Phys. J. C, 60, 163–168 (2009); arXiv:0802.1118v1 [math-ph] (2008).MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    M. Demetrian and D. Kochan, Acta Phys. Slovaca, 52, 1–9 (2002); arXiv:hep-th/0102050v2 (2001); J.-Z. Zhang, Phys. Lett. B, 584, 204–209 (2004); arXiv:hep-th/0405135v1 (2004).Google Scholar
  11. 11.
    K. Li, J. Wang, and C. Chen, Modern Phys. Lett. A, 20, 2165–2174 (2005); arXiv:hep-th/0409234v2 (2004).MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    T. Heng, B. Lin, and S. Jing, Chin. Phys. Lett., 27, 090302 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    Ö. F. Dayi, and L. T. Kelleyane, Modern Phys. Lett. A, 17, 1937–1944 (2002); arXiv:hep-th/0202062v1 (2002).MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    K. Li, J. Wang, S. Dulat, and K. Ma, Internat. J. Theoret. Phys., 49, 134–143 (2010).MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    J. Wang, K. Li, and S. Dulat, “Wigner functions for harmonic oscillator in noncommutative phase space,” arXiv:0908.1703v1 [hep-th] (2009).Google Scholar
  16. 16.
    E. Wigner, Phys. Rev., 40, 749–759 (1932).ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    J. E. Moyal, Proc. Cambridge Philos. Soc., 45, 99–124 (1949).MathSciNetzbMATHCrossRefADSGoogle Scholar
  18. 18.
    D. B. Fairlie and C. A. Manogue, J. Phys. A, 24, 3807–3815 (1991); T. Curtright, D. Fairlie, and C. Zachos, Phys. Rev. D, 58, 025002 (1998); arXiv:hep-th/9711183v3 (1997); C. Zachos, Internat. J. Modern Phys. A, 17, 297–316 (2002); arXiv:hep-th/0110114v3 (2001).MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© MAIK/Nauka 2011

Authors and Affiliations

  1. 1.School of Physics Science and TechnologyXinjiang UniversityUrumqiChina
  2. 2.Department of PhysicsHangzhou Normal UniversityHangzhouChina
  3. 3.Department of PhysicsShaanxi University of TechnologyHanzhongChina

Personalised recommendations