Skip to main content
Log in

The effect of strongly anisotropic turbulent mixing on critical behavior: Renormalization group analysis of two nonstandard systems

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the effect of strongly anisotropic turbulent mixing on the critical behavior of two systems: a φ3 critical dynamics model describing universal properties of metastable states in the vicinity of a firstorder phase transition and a reaction-diffusion system near the point of a second-order transition between fluctuation and absorption states (a simple epidemic process or the Gribov process). In both cases, we demonstrate the existence of a new strongly nonequilibrium, anisotropic scaling regime (universality class) for which both the mixing and the nonlinearity in the order parameter are relevant. We evaluate the corresponding critical dimensions in the one-loop approximation of the renormalization group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Vasil’ev, Quantum Field Renormalization Group in Critical Behavior Theory and Stochastic Dynamics [in Russian], Izd. PIYaF, St. Petersburg (1998); English transl.: The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, Chapman and Hall/CRC, Boca Raton, Fla. (2004).

    Google Scholar 

  2. H.-K. Janssen and U. C. Täuber, Ann. Phys., 315, 147–192 (2004); arXiv:cond-mat/0409670v1 (2004).

    ADS  Google Scholar 

  3. D. Yu. Ivanov, Critical Behavior of Nonidealized Systems [in Russian], Fizmatlit, Moscow (2003).

    Google Scholar 

  4. A. Onuki and K. Kawasaki, Progr. Theoret. Phys., 63, 122–139 (1980); T. Imaeda, A. Onuki, and K. Kawasaki, Progr. Theoret. Phys., 71, 16–26 (1984).

    Article  ADS  Google Scholar 

  5. D. Beysens, M. Gbadamassi, and L. Boyer, Phys. Rev. Lett., 43, 1253–1256 (1979); D. Beysens and M. Gbadamassi, J. Phys. Lett., 40, 565–567 (1979).

    Article  ADS  Google Scholar 

  6. R. Ruiz and D. R. Nelson, Phys. Rev. A, 23, 3224–3246 (1981); 24, 2727–2734 (1981); J. A. Aronowitz and D. R. Nelson, Phys. Rev. A, 29, 2012–2016 (1984).

    Article  ADS  Google Scholar 

  7. N. V. Antonov, M. Hnatich, and J. Honkonen, J. Phys. A, 39, 7867–7887 (2006); arXiv:cond-mat/0604434v1 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. N. V. Antonov and A. A. Ignatieva, J. Phys. A, 39, 13593–13620 (2006); arXiv:cond-mat/0607019v1 (2006); N. V. Antonov, A. A. Ignatieva, and A. V. Malyshev, Phys. Part. Nucl., 41, 998–1000 (2010); arXiv:1003.2855v1 [cond-mat.stat-mech] (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. N. V. Antonov, V. I. Iglovikov, and A. S. Kapustin, J. Phys. A, 42, 135001 (2009); arXiv:0808.0076v1 [condmat. stat-mech] (2008); N. V. Antonov and A. S. Kapustin, J. Phys. A, 43, 405001 (2010); arXiv:1006.3133v1 [cond-mat.stat-mech] (2010).

    Article  MathSciNet  ADS  Google Scholar 

  10. F. Zhong and Q. Chen, Phys. Rev. Lett., 95, 175701 (2005).

    Article  ADS  Google Scholar 

  11. M. Avellaneda and A. J. Majda, Comm. Math. Phys., 131, 381–429 (1990); 146, 139–204 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. G. Falkovich, K. Gawędzki, and M. Vergassola, Rev. Modern Phys., 73, 913–975 (2001); arXiv:cond-mat/ 0105199v1 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. N. V. Antonov, J. Phys. A, 39, 7825–7865 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. M. E. Fisher, Phys. Rev. Lett., 40, 1610–1613 (1978).

    Article  ADS  Google Scholar 

  15. C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. Lett., 93, 251601 (2004); arXiv:hep-th/0402011v3 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  16. O. F. de Alcantara Bonfim, J. E. Kirkham, and A. J. McKane, J. Phys. A, 13, L247–L251 (1980); 14, 2391–2413 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Antonov.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 167, No. 1, pp. 50–77, April, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonov, N.V., Malyshev, A.V. The effect of strongly anisotropic turbulent mixing on critical behavior: Renormalization group analysis of two nonstandard systems. Theor Math Phys 167, 444–467 (2011). https://doi.org/10.1007/s11232-011-0034-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-011-0034-x

Keywords

Navigation