Abstract
We attempt to propose an algebraic approach to the theory of integrable difference equations. We define the concept of a recursion operator for difference equations and show that it generates an infinite sequence of symmetries and canonical conservation laws for a difference equation. As in the case of partial differential equations, these canonical densities can serve as integrability conditions for difference equations. We obtain the recursion operators for the Viallet equation and all the Adler-Bobenko-Suris equations.
Similar content being viewed by others
References
V. E. Zakharov, ed., What is Integrability? Springer, Berlin (1991).
A. V. Mikhailov, ed., Integrability (Lect. Notes Phys., Vol. 767), Springer, Berlin (2009).
P. J. Olver, Applications of Lie Groups to Differential Equations (Grad. Texts Math., Vol. 107), Springer, New York (1993).
V. V. Sokolov and A. B. Shabat, “Classification of integrable evolution equations,” in: Mathematical Physics Reviews (Sov. Sci. Rev., Sect. C, Vol. 4, S. P. Novikov, ed.), Harwood Academic, Chur (1984), pp. 221–280.
A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov, Comm. Math. Phys., 115, 1–19 (1988).
A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov, Russ. Math. Surveys, 42, No. 4, 1–63 (1987).
A. V. Mikhajlov, A. B. Shabat, and V. V. Sokolov, “The symmetry approach to the classification of integrable equations,” in: What is Integrability? (V. E. Zakharov, ed.), Springer, Berlin (1991), pp. 115–184.
J. A. Sanders and J. P. Wang, J. Differential Equations, 147, 410–434 (1998).
J. P. Wang, “Symmetries and conservation laws of evolution equations,” Doctoral dissertation, Vrije Universiteit/Thomas Stieltjes Institute, Amsterdam (1998).
V. É. Adler, A. B. Shabat, and R. I. Yamilov, Theor. Math. Phys., 125, 1603–1661 (2000).
R. I. Yamilov, Upsekhi Mat. Nauk, 38, No. 6, 155–156 (1983).
R. I. Yamilov, J. Phys. A, 39, R541–R623 (2006).
F. W. Nijhoff and H. W. Capel, Acta Appl. Math., 39, 133–158 (1995).
B. Grammaticos, R. G. Halburd, A. Ramani, and C.-M. Viallet, J. Phys. A, 42, 454002 (2009).
A. I. Bobenko and Yu. B. Suris, Internat. Math. Res. Notices, 2002, 573–611 (2002); arXiv:nlin/0110004v1 (2001).
F. W. Nijhoff, Phys. Lett. A, 297, 49–58 (2002); arXiv:nlin/0110027v1 (2001).
F. W. Nijhoff and A. J. Walker, Glasg. Math. J., 43, No. A, 109–123 (2001).
V. E. Adler, A. I. Bobenko, and Yu. B. Suris, Comm. Math. Phys., 233, 513–543 (2003); arXiv:nlin/0202024v2 (2002).
V. E. Adler, A. I. Bobenko, and Yu. B. Suris, Funct. Anal. Appl., 43, No. 1, 3–17 (2009).
M. P. Bellon and C.-M. Viallet, Comm. Math. Phys., 204, 425–437 (1999); arXiv:chao-dyn/9805006v3 (1998).
C. M. Viallet, Glasg. Math. J., 51 A, 157–163 (2009); arXiv:0802.0294v1 [hep-th] (2008).
P. Xenitidis, “Integrability and symmetries of difference equations: The Adler-Bobenko-Suris case,” arXiv: 0902.3954v1 [nlin.SI] (2009).
O. G. Rasin and P. E. Hydon, J. Phys. A, 40, 12763–12773 (2007).
A. G. Rasin and J. Schiff, J. Phys. A, 42, 175205 (2009); arXiv:0901.0390v1 [nlin.SI] (2009).
A. G. Rasin, J. Phys. A, 43, 235201 (2010); arXiv:1001.0724v1 [nlin.SI] (2010).
D. Levi and R. I. Yamilov, J. Phys. A, 42, 454012 (2009); arXiv:0902.4421v1 [nlin.SI] (2009).
G.-L. Zhang and X.-S. Gao, “Properties of ascending chains for partial difference polynomial systems,” in: Lecture Notes in Artificial Intelligence (Lect. Notes Comput. Sci., Vol. 5081, D. Kapur, ed.), Springer, Berlin (2008), pp. 307–321.
V. G. Papageorgiou, F. W. Nijhoff, and H. W. Capel, Phys. Lett. A, 147, 106–114 (1990).
A. Tongas, D. Tsoubelis, and P. Xenitidis, J. Phys. A, 40, 13353–13384 (2007); arXiv:0707.3730v1 [nlin.SI] (2007).
A. V. Zhiber and V. V. Sokolov, Russ. Math. Surveys, 56, 61–101 (2001).
M. Adler, Invent. Math., 50, 219–248 (1978/79).
J. A. Sanders and J. P. Wang, Nonlin. Anal., 47, 5213–5240 (2001).
A. B. Shabat and R. I. Yamilov, Phys. Lett. A, 130, 271–275 (1988).
A. V. Mikhailov, J. P. Wang, and P. Xenitidis, “Cosymmetries and Nijenhuis recursion operators for difference equations,” arXiv:1009.2403v1 [nlin.SI] (2010).
I. M. Gel’fand and I. Ya. Dorfman, Funct. Anal. Appl., 13, No. 4, 248–262 (1979).
A. S. Fokas and B. Fuchssteiner, Lett. Nuovo Cimento (2), 28, 299–303 (1980).
I. Ya. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, Chichester (1993).
J. P. Wang, J. Math. Phys., 50, 023506 (2009); arXiv:0809.3899v1 [nlin.SI] (2008).
J. Hietarinta, J. Nonlin. Math. Phys., 12(Suppl. 2), 223–230 (2005).
Author information
Authors and Affiliations
Corresponding author
Additional information
Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 167, No. 1, pp. 23–49, April, 2011.
Rights and permissions
About this article
Cite this article
Mikhailov, A.V., Wang, J.P. & Xenitidis, P. Recursion operators, conservation laws, and integrability conditions for difference equations. Theor Math Phys 167, 421–443 (2011). https://doi.org/10.1007/s11232-011-0033-y
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11232-011-0033-y