Skip to main content
Log in

Remark on the phase shift in the Kuzmak-Whitham ansatz

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider one-phase (formal) asymptotic solutions in the Kuzmak-Whitham form for the nonlinear Klein-Gordon equation and for the Korteweg-de Vries equation. In this case, the leading asymptotic expansion term has the form X(S(x, t)/h+Φ(x, t), I(x, t), x, t) +O(h), where h ≪ 1 is a small parameter and the phase S}(x, t) and slowly changing parameters I(x, t) are to be found from the system of “averaged” Whitham equations. We obtain the equations for the phase shift Φ(x, t) by studying the second-order correction to the leading term. The corresponding procedure for finding the phase shift is then nonuniform with respect to the transition to a linear (and weakly nonlinear) case. Our observation, which essentially follows from papers by Haberman and collaborators, is that if we incorporate the phase shift Φ into the phase and adjust the parameter Ĩ by setting \( \tilde S \) = S +hΦ+O(h 2),Ĩ = I + hI 1 + O(h 2), then the functions \( \tilde S \)(x, t, h) and Ĩ(x, t, h) become solutions of the Cauchy problem for the same Whitham system but with modified initial conditions. These functions completely determine the leading asymptotic term, which is X(\( \tilde S \)(x, t, h)/h, Ĩ(x, t, h), x, t) + O(h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yu. Dobrokhotov and V. P. Maslov, J. Sov. Math., 16, 1433–1487 (1981).

    Article  MATH  Google Scholar 

  2. S. Yu. Dobrokhotov and D. S. Minenkov, Regul. Chaotic Dyn., 15, 285–299 (2010).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. R. Haberman, SIAM J. Appl. Math., 51, 1638–1652 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. J. C. Luke, Proc. Roy. Soc. London A, 292, 403–412 (1966).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. G. B. Whitham, Proc. Roy. Soc. London A, 283, 238–261 (1965).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. G. B. Whitham, J. Fluid Mech., 44, 373–395 (1970).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. A. M. Il’in, Theor. Math. Phys., 118, 301–306 (1999).

    Article  MATH  Google Scholar 

  8. I. M. Krichever, Funct. Anal. Appl., 22, No. 3, 200–213 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  9. F. J. Bourland and R. Haberman, SIAM J. Appl. Math, 48, 737–748 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Yu. Dobrokhotov and I. M. Krichever, Math. Notes, 49, 583–594 (1991).

    MATH  MathSciNet  Google Scholar 

  11. V. P. Maslov, Theor. Math. Phys., 1, 289–293 (1969).

    Article  Google Scholar 

  12. V. I. Arnol’d, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1997); English transl. prev. ed. (Grad. Texts in Math., Vol. 60), Springer, New York (1978).

    Google Scholar 

  13. V. P. Maslov, Russ. Math. Surveys, 41, No. 6, 23–42 (1986).

    Article  ADS  Google Scholar 

  14. A. Ya. Maltsev, Funct. Anal. Appl., 42, No. 2, 103–115 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  15. A. C. Newell, Solitons in Mathematics and Physics, SIAM, Philadelphia (1985).

    Book  Google Scholar 

  16. R. Haberman, Stud. Appl. Math., 78, 73–90 (1988).

    MATH  MathSciNet  Google Scholar 

  17. A. R. Its and V. B. Matveev, “A class of solutions of the Korteweg-de Vries equation [in Russian],” in: Problems in Mathematical Physics, Vol. 8, Izdat. Leningrad. Univ., Leningrad (1976), pp. 70–92.

    Google Scholar 

  18. V. B. Matveev, “Abelian functions and solitons,” Preprint No. 373, Inst. Theor. Phys., Univ. Wroclaw, Wroclaw (1976).

    Google Scholar 

  19. B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Russ. Math. Surveys, 31, 59–146 (1976).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. H. Flashka, M. G. Forest, and D. W. McLaughlin, Comm. Pure. Appl. Math., 33, 739–784 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  21. N. I. Akhiezer, Elements of the Theory of Elliptic Functions [in Russian], Nauka, Moscow (1970); English transl. (Transl. Math. Monogr., Vol. 79), Amer. Math. Soc., Providence, R. I. (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Dobrokhotov.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 166, No. 3, pp. 350–365, March, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrokhotov, S.Y., Minenkov, D.S. Remark on the phase shift in the Kuzmak-Whitham ansatz. Theor Math Phys 166, 303–316 (2011). https://doi.org/10.1007/s11232-011-0025-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-011-0025-y

Keywords

Navigation