Skip to main content

Advertisement

Log in

The relative frame bundle of an infinite-dimensional flag variety and solutions of integrable hierarchies

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop a group theory approach for constructing solutions of integrable hierarchies corresponding to the deformation of a collection of commuting directions inside the Lie algebra of upper-triangular ZxZ matrices. Depending on the choice of the set of commuting directions, the homogeneous space from which these solutions are constructed is the relative frame bundle of an infinite-dimensional flag variety or the infinite-dimensional flag variety itself. We give the evolution equations for the perturbations of the basic directions in the Lax form, and they reduce to a tower of differential and difference equations for the coefficients of these perturbed matrices. The Lax equations follow from the linearization of the hierarchy and require introducing a proper analogue of the Baker—Akhiezer function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Date, M. Kashiwara, M. Jimbo, and T. Miwa, “Transformation groups for soliton equations,” in: Nonlinear Integrable Systems: Classical Theory and Quantum Theory (M. Jimbo and T. Miwa, eds.), World Scientific, Singapore (1983), pp. 39–119.

    Google Scholar 

  2. G. Segal and G. Wilson, Publ. Math. IHES, 61, 5–65 (1985).

    MATH  MathSciNet  Google Scholar 

  3. G. F. Helminck and J. W. van de Leur, Canad. J. Math., 53, 278–309 (2001).

    Article  MathSciNet  Google Scholar 

  4. M. Toda, Nonlinear Waves and Solitons (Math. and its Appl., Vol. 5), Kluwer, Dordrecht (1989).

    Google Scholar 

  5. A. V. Mikhailov, M. A. Olshanetsky, and A. M. Perelomov, Comm. Math. Phys., 79, 473–488 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Okounkov and R. Pandharipande, Ann. Math. (2), 163, 561–605 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Nakatsu and K. Takasaki, Comm. Math. Phys., 285, 445–468 (2009); arXiv:0710.5339v2 [hep-th] (2007).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. R. Dijkgraaf, “Integrable hierarchies and quantum gravity,” in: Geometric and Quantum Aspects of Integrable Systems (Lect. Notes Phys., Vol. 424, G. F. Helminck, ed.), Springer, Berlin (1993), p. 67–89.

    Chapter  Google Scholar 

  9. A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, and A. Orlov, Nucl. Phys. B, 357, 565–618 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  10. P. van Moerbeke, “Integrable foundations of string theory,” in: Lectures on Integrable Systems (O. Babelon, P. Cartier, and Y. Kosmann-Schwarzbach, eds.), World Scientific, Singapore (1994), pp. 163–267.

    Google Scholar 

  11. M. Adler and P. van Moerbeke, Duke Math J., 80, 863–911 (1995); arXiv:solv-int/9706010v1 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  12. L. Haine and E. Horozov, Bull. Sci. Math., 117, 485–518 (1993).

    MATH  MathSciNet  Google Scholar 

  13. M. A. Guest, Harmonic Maps, Loop Groups, and Integrable Systems (Math. Soc. Stud. Texts, Vol. 38), Cambridge Univ. Press, London (1997).

    Google Scholar 

  14. A. Givental, “Stationary phase integrals, quantum Toda lattices, flag manifolds, and the mirror conjecture,” in: Topics in Singularity Theory (Amer. Math. Soc. Transl. Ser. 2, Vol. 180, A. Khovanskii, A. Varchenko, and V. Vassiliev, eds.), Amer. Math. Soc., Providence, R. I. (1997), pp. 103–115.

    Google Scholar 

  15. K. Ueno and K. Takasaki, “Toda lattice hierarchy,” in: Group Representations and Systems of Differential Equations (Adv. Stud. Pure Math., Vol. 4, K. Okamoto, ed.), North-Holland, Amsterdam (1984), pp. 1–95.

    Google Scholar 

  16. M. Adler and P. van Moerbeke, Internat. Math. Res. Notices, 1997, No. 12, 555 (1997).

    Article  MATH  Google Scholar 

  17. G. F. Helminck and A. V. Opimakh, “The zero curvature form of integrable hierarchies in the upper triangular matrices,” Algebra Colloq. (to appear).

  18. S. Kobayashi, Differential Geometry of Complex Vector Bundles (Publ. Math. Soc. Japan), Vol. 15, Princeton Univ. Press, Princeton, N. J. (1987).

    Google Scholar 

  19. R. Schatten, Norm Ideals of Completely Continuous Operators (Ergeb. Math. Grenzgeb., Vol. 27), Springer, Berlin (1970).

    Google Scholar 

  20. A. Grothendieck, Am. J. Math., 79, 121–138 (1957).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 165, No. 3, pp. 440–471, December, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helminck, G.F., Helminck, A.G. & Opimakh, A.V. The relative frame bundle of an infinite-dimensional flag variety and solutions of integrable hierarchies. Theor Math Phys 165, 1610–1636 (2010). https://doi.org/10.1007/s11232-010-0133-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-010-0133-0

Keywords

Navigation