Skip to main content
Log in

Semiclassical spectral series of the Schrödinger operator with a delta potential on a straight line and on a sphere

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe the spectral series of the Schrödinger operator H = −(h2/2)Δ + V(x) + αδ(x−x0), α ∈ ℝ, with a delta potential on the real line and on the three- and two-dimensional standard spheres in the semiclassical limit as h → 0. We consider a smooth potential V(x) such that lim|x|→∞V(x)=+∞ in the first case and V(x) = 0 in the last two cases. In the semiclassical limit in each case, we describe the classical trajectories corresponding to the quantum problem with a delta potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. de L. Kronig and W. G. Penney, Proc. Roy. Soc. London A, 130, 499–513 (1931).

    Article  MATH  ADS  Google Scholar 

  2. H. Bethe and R. Peierls, Proc. Roy. Soc. London A, 148, 146–156 (1935).

    Article  ADS  Google Scholar 

  3. M. L. Goldberger and F. Seitz, Phys. Rev., 71, 294–310 (1947).

    Article  MATH  ADS  Google Scholar 

  4. Ya. B. Zel’dovich, Phys. Solid State, 1, 1638–1645 (1959).

    Google Scholar 

  5. S. Fassari and G. Inglese, Helv. Phys. Acta, 67, 650–659 (1994); 69, 130–140 (1996); 70, 858–865 (1997).

    MATH  MathSciNet  Google Scholar 

  6. V. D. Krevchik, A. B. Grunin, A. K. Aringazin, and M. B. Semenov, Hadronic J. Suppl., 18, 261–294 (2003).

    Google Scholar 

  7. Q.-Z. Peng, X.-D. Wang, and J.-Y. Zeng, Sci. China A, 34, 1215–1221 (1991).

    MATH  MathSciNet  Google Scholar 

  8. V. D. Krevchik and R. V. Zaitsev, Phys. Solid State, 43, 522–526 (2001).

    Article  ADS  Google Scholar 

  9. F. A. Berezin and L. D. Faddeev, Sov. Math. Dokl., 2, 372–375 (1961).

    MATH  Google Scholar 

  10. S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, Amer. Math. Soc., Providence, R. I. (2005).

    MATH  Google Scholar 

  11. S. Albeverio and P. Kurasov, Singular Perturbations of Differential Operators (London Math. Soc. Lect. Note Ser., Vol. 271), Cambridge Univ. Press, Cambridge (2000).

    Google Scholar 

  12. J. Brüning and V. Geyler, J. Math. Phys., 44, 371–405 (2003); arXiv:math-ph/0205030v1 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. J. Brüning, V. Geyler, and K. Pankrashkin, Rev. Math. Phys., 20, 1–70 (2008); arXiv:math-ph/0611088v3 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Brüning and V. A. Geiler, Theor. Math. Phys., 119, 687–697 (1999).

    Article  MATH  Google Scholar 

  15. I. S. Lobanov, “Spectral properties of Hamiltonians of explicitly solvable models of mesoscopic structures: Decorated graphs and quantum points,” Candidate dissertation, Ogarev Mordovia State Univ., Saransk (2005).

    Google Scholar 

  16. V. P. Maslov, Asymptotic Methods and Perturbation Theory [in Russian], Nauka, Moscow (1988).

    MATH  Google Scholar 

  17. V. P. Maslov and M. V. Fedoryuk, Quasiclassical Approximation for the Equations of Quantum Mechanics [in Russian], Nauka, Moscow (1976); English transl. (Math. Phys. Appl. Math., Vol. 7), Reidel, Dordrecht (1981).

    MATH  Google Scholar 

  18. V. R. Kogan, Radiophys. and Quantum Electronics, 12, 1306–1310 (1972).

    Article  ADS  Google Scholar 

  19. V. V. Kucherenko, Theor. Math. Phys., 1, 294–310 (1969).

    Article  Google Scholar 

  20. V. A. Geiler, V. A. Margulis, and I. I. Chuchaev, Siberian Math. J., 36, 714–726 (1995).

    Article  MathSciNet  Google Scholar 

  21. L. D. Landau and E. M. Lifshits, Theoretical Physics [in Russian], Vol. 3, Quantum Mechanics: Non-Relativistic Theory, Nauka, Moscow (2001); English transl. prev. ed., Pergamon, London (1958).

    Google Scholar 

  22. E. Jahnke, F. Emde, and F. Lösch, Tables of Higher Functions, McGraw-Hill, New York (1960).

    MATH  Google Scholar 

  23. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions, Vol. 1, The Hypergeometric Function, Legendre Functions, McGraw-Hill, New York (1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Filatova.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 164, No. 2, pp. 279–298, August, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filatova, T.A., Shafarevich, A.I. Semiclassical spectral series of the Schrödinger operator with a delta potential on a straight line and on a sphere. Theor Math Phys 164, 1064–1080 (2010). https://doi.org/10.1007/s11232-010-0085-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-010-0085-4

Keywords

Navigation