Skip to main content
Log in

Renormalization group approach to function approximation and to improving subsequent approximations

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish a relation between bijective functions and renormalization group transformations and find their renormalization group invariants. For these functions, taking into account that they are globally one-to-one, we propose several improved approximations (compared with the power series expansion) based on this relation. We propose using the obtained approximations to improve the subsequent approximations of physical quantities obtained, in particular, by one of the main calculation techniques in theoretical physics, i.e., by perturbation theory. We illustrate the effectiveness of the renormalization group approximation with several examples: renormalization group approximations of several analytic functions and calculation of the nonharmonic oscillator ground-state energy. We also generalize our approach to the case of set maps, both continuous and discrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. I. Kazakov and D. V. Shirkov, Fortschr. Phys., 28, 465–499 (1980).

    Article  MathSciNet  Google Scholar 

  2. J. Zinn-Justin, Phys. Rep., 70, 109–167 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  3. W. B. Jones and W. J. Thron, Continued Fractions: Analytic Theory and Applications (Encycl. Math. Appl., Vol. 11), Addison-Wesley, Reading, Mass. (1980).

    Google Scholar 

  4. F. Beleznay, J. Phys. A, 19, 551–562 (1986).

    Article  ADS  Google Scholar 

  5. D. V. Shirkov, Sov. Phys. Dokl., 27, 197–199 (1982).

    ADS  Google Scholar 

  6. V. F. Kovalev and D. V. Shirkov, Theor. Math. Phys., 121, 1315–1332 (1999); arXiv:math-ph/0001027v1 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  7. N. N. Bogoliubov and D. V. Shirkov, Dokl. Akad. Nauk, 103, 203–206 (1955).

    Google Scholar 

  8. N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields [in Russian], Nauka, Moscow (1984); English transl. prev. ed., John Wiley, New York (1980).

    Google Scholar 

  9. M. A. Lavrent’ev and B. V. Shabat, Methods for the Theory of Functions of a Complex Variable [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  10. G. A. Baker Jr. and P. Graves-Morris, Padé Approximants, Vols. 1 and 2 (Encycl. Math. Appl., Vol. 13 and 14), Addison-Wesley, Reading, Mass. (1981).

    Google Scholar 

  11. G. Korn and T. Korn, Mathematical Handbook, McGraw-Hill, New York (1968).

    Google Scholar 

  12. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, Adv. Comput. Math., 5, 329–359 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  13. C. M. Bender and T. T. Wu, Phys. Rev., 184, 1231–1260 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  14. C. M. Bender and T. T. Wu, Phys. Rev. D, 7, 1620–1636 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  15. S. N. Biswas, K. Datta, R. P. Saxena, P. K. Srivastava, and V. S. Varma, J. Math. Phys., 14, 1190–1195 (1973).

    Article  ADS  Google Scholar 

  16. F. T. Hioe and E. W. Montroll, J. Math. Phys., 16, 1945–1955 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  17. F. T. Hioe, D. MacMillen, and E. W. Montroll, Phys. Rep., 43, 305–335 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  18. V. I. Yukalov, Phys. A, 167, 833–860 (1990).

    Article  MathSciNet  Google Scholar 

  19. P. M. Stevenson, Phys. Rev. D, 23, 2916–2944 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Nikolaev.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 164, No. 2, pp. 243–261, August, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolaev, G.N. Renormalization group approach to function approximation and to improving subsequent approximations. Theor Math Phys 164, 1035–1050 (2010). https://doi.org/10.1007/s11232-010-0083-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-010-0083-6

Keywords

Navigation