Skip to main content
Log in

Hecke surfaces and duality transformations in lattice spin systems

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss two related subjects: (1) Hecke surfaces and K-regular graphs and (2) duality transformations for generalized Potts models. Each is related to deep mathematical and physical theories; at a first glance, they have nothing in common. But it has recently become more evident that there are deep internal relations between these two problems. The role of Hecke groups is especially interesting and mysterious in this context. We consider a few examples. The exposition is basically descriptive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Brooks and M. Monastyrsky, “K-regular graphs and Hecke surfaces,” in: Geometry, Spectral Theory, Groups, and Dynamics (Contemp. Math., Vol. 387, M. Entov, Y. Pinchover, and M. Sageev, eds.), Amer. Math. Soc., Providence, R. I. (2005), pp. 65–74.

    Google Scholar 

  2. R. Brooks and E. Makover, J. Differential Geom., 68, 121–157 (2004).

    MATH  MathSciNet  Google Scholar 

  3. G. V. Belyi, Math. USSR-Izv., 14, No. 2, 247–256 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Brooks and E. Makover, “Belyi surfaces,” in: Entire Functions in Modern Analysis (Israel Math. Conf. Proc., Vol. 15, Y. Lyubich, V. Milman, I. Ostrovskii, M. Sodin, V. Tkachenko, and L. Zalcman, eds.), Bar-Ilan Univ., Ramat Gan (2001), pp. 37–46.

    Google Scholar 

  5. P. B. Cohen, C. Itsykson, and J. Wolfart, Comm. Math. Phys., 163, 605–627 (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. G. Jones and D. Singermann, Bull. London Math. Soc., 28, 561–590 (1996).

    Article  MathSciNet  Google Scholar 

  7. R. Brooks, Comment. Math. Helv., 74, 156–170 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Mangoubi, J. Anal. Math., 91, 193–209 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  9. V. F. R. Jones, Invent. Math., 72, 1–25 (1983).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Acad. Press, London (1982).

    MATH  Google Scholar 

  11. P. W. Kasteleyn and C. M. Fortuin, J. Phys. Soc. Japan, 26,Suppl., 11–14 (1969).

    ADS  Google Scholar 

  12. W. T. Tutte, Graph Theory (Encycl. Math. Appl., Vol. 21), Addison-Wesley, Reading, Mass. (1984).

    MATH  Google Scholar 

  13. A. B. Zamolodchikov, “Exact solutions in two-dimensional conformal theory and critical phenomena,” Preprint No. ITP-87-65, Inst. Theor. Phys., Kiev (1987).

    Google Scholar 

  14. V. M. Buchstaber and M. I. Monastyrsky, J. Phys. A, 36, 7679–7692 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. M. Monastyrsky, “Kramers-Wannier Duality for spin systems with non-Abelian symmetries,” Proc. 4th School in Mathematical Physics, Belgrade, 2006 (2006).

  16. I. Dolgachev, “McKay’s correspondence for cocompact discrete subgroups of SU(1,1),” in: Groups and Symmetries (CRM Proc. Lect. Notes, Vol. 47, J. Harnard and P. Winternitz, eds.), Amer. Math. Soc., Providence, R. I. (2009), pp. 111–133.

    Google Scholar 

  17. Vl. S. Dotsenko, J. Stat. Phys., 34, 781–791 (1984).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Monastyrsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monastyrsky, M.I. Hecke surfaces and duality transformations in lattice spin systems. Theor Math Phys 163, 813–818 (2010). https://doi.org/10.1007/s11232-010-0065-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-010-0065-8

Keywords

Navigation