Skip to main content
Log in

Stable exact solutions in cosmological models with two scalar fields

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the stability of isotropic solutions for two-field models in the Bianchi I metric. We prove that the sufficient conditions for Lyapunov stability in the Friedmann-Robertson-Walker metric ensure the stability under anisotropic perturbations in the Bianchi I metric and also under perturbations of the energy density for cold dark matter. We find sufficient conditions for the Lyapunov stability of isotropic fixed points for the system of Einstein equations. We use the superpotential method to construct stable kink-type solutions and obtain sufficient conditions on the superpotential for the Lyapunov stability of the corresponding exact solutions. We analyze the stability of isotropic kink-type solutions for models related to string field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Riess et al. (Team Collab.), J. Astrophys., 607, 665–687 (2004); arXiv:astro-ph/0402512v2 (2004); M. Tegmark et al. (SDSS Collab.), J. Astrophys., 606, 702–740 (2004); arXiv:astro-ph/0310725v2 (2003); E. Komatsu et al. (WMAP Collab.), J. Astrophys. Suppl., 180, 330–376 (2009); arXiv:0803.0547v2 [astro-ph] (2008); P. Astier et al., Astron. Astrophys., 447, 31–48 (2006); arXiv:astro-ph/0510447v1 (2005); S. Ho, C. Hirata, N. Padmanabhan, U. Seljak, and N. Bahcall, Phys. Rev. D, 78, 043519 (2008); arXiv:0801.0642v2 [astroph] (2008); W. M. Wood-Vasey et al. (ESSENCE Collab.), J. Astrophys., 666, 694–715 (2007); arXiv:astroph/0701041v1 (2007); D. Baumann et al. (Team Collab.), “Probing inflation with CMB polarization,” in: CMB Polarization Workshop: Theory and Foregrounds: CMBPol Mission Concept (AIP Conf. Proc., Vol. 1141, S. Dodelson et al., eds.), AIP, Melville, N. Y. (2009), pp. 10–120; arXiv:0811.3919v2 [astro-ph] (2008).

    Article  ADS  Google Scholar 

  2. J. D. Barrow, Phys. Rev. D, 55, 7451–7460 (1997); arXiv:gr-qc/9701038v1 (1997); A. Bernui, B. Mota, M. J. Rebouças, and R. Tavakol, Astron. Astrophys., 464, 479–485 (2007); arXiv:astro-ph/0511666v4 (2005).

    Article  ADS  Google Scholar 

  3. U. Alam, V. Sahni, T. D. Saina, and A. A. Starobinsky, Mon. Not. Roy. Astron. Soc., 354, 275–291 (2004); arXiv:astro-ph/0311364v3 (2003).

    Article  ADS  Google Scholar 

  4. S. Nesseris and L. Perivolaropoulos, J. Cosmol. Astropart. Phys., 07 01, 018 (2007); arXiv:astro-ph/0610092v3 (2006); J. Zhang and Y.-X. Gui, “Reconstructing quintom from WMAP 5-year observations: Generalized ghost condensate,” arXiv:astro-ph/0910.1200v3 [astro-ph.CO] (2009).

    Article  MathSciNet  ADS  Google Scholar 

  5. Y.-F. Cai, E. N. Saridakis, M. R. Setare, and J.-Q. Xia, “Quintom cosmology: Theoretical implications and observations,” arXiv:astro-ph/0909.2776v2 [hep-th] (2009); H. Zhang, “Crossing the phantom divide,” arXiv:0909.3013v1 [astro-ph.CO] (2009).

  6. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time (Cambridge Monogr. Math. Phys., Vol. 1), Cambridge Univ. Press, London (1973).

    MATH  Google Scholar 

  7. P. J. Steinhardt and N. Turok, Phys. Rev. D, 65, 126003 (2002); arXiv:hep-th/0111098v2 (2001); M. Gasperini and G. Veneziano, Phys. Rept., 373, 1–212 (2003); arXiv:hep-th/0207130v1 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  8. Z.-K. Guo, Y.-S. Piao, X. Zhang, and Y.-Z. Zhang, Phys. Lett. B, 608, 177–182 (2005); arXiv:astroph/0410654v1 (2004).

    Article  ADS  Google Scholar 

  9. I. Ya. Aref’eva, A. S. Koshelev, and S. Yu. Vernov, Phys. Rev. D, 72, 064017 (2005); arXiv:astro-ph/0507067v2 (2005).

    Article  ADS  Google Scholar 

  10. R. Lazkoz, G. Léon, and I. Quiros, Phys. Lett. B, 649, 103–110 (2007); arXiv:astro-ph/0701353v2 (2007).

    Article  ADS  Google Scholar 

  11. R. Lazkoz and G. Léon, Phys. Lett. B, 638, 303–309 (2006); arXiv:astro-ph/0602590v1 (2006); G. Léon, R. Cardenas, and J. L. Morales, “Equilibrium sets in quintom cosmologies: The past asymptotic dynamics,” arXiv:astro-ph/0812.0830v2 [gr-qc] (2008).

    Article  ADS  Google Scholar 

  12. J. Sadeghi, M. R. Setare, and A. Banijamali, Phys. Lett. B, 678, 164–167 (2009); arXiv:0903.4073v1 [hep-th] (2009); M. R. Setare and E. N. Saridakis, Phys. Rev. D, 79, 043005 (2009); arXiv:0810.4775v2 [astro-ph] (2008); M. R. Setare and E. N. Saridakis, Internat. J. Mod. Phys. D, 18, 549–557 (2009); arXiv:0807.3807v1 [hep-th] (2008); H. M. Sadjadi and M. Alimohammadi, Phys. Rev. D, 74, 043506 (2006); arXiv:gr-qc/0605143v2 (2006); M. Alimohammadi, Gen. Relativity Gravitation, 40, 107–115 (2008); arXiv:0706.1360v3 [gr-qc] (2007); W. Zhao and Y. Zhang, Phys. Rev. D, 73, 123509 (2006); arXiv:astro-ph/0604460v5 (2006); Z.-K. Guo, Y.-S. Piao, X. Zhang, and Y.-Z. Zhang, Phys. Lett. B, 608, 177–182 (2005); arXiv:astro-ph/0410654v1 (2004); X.-F. Zhang, H. Li, Y.-S. Piao, and X. Zhang, Modern Phys. Lett. A, 21, 231–241 (2006); arXiv:astro-ph/0501652v1 (2005); H. Štefančić, Phys. Rev. D, 71, 124036 (2005); arXiv:astro-ph/0504518v3 (2005); E. Elizalde, S. Nojiri, and S. D. Odintsov, Phys. Rev. D, 70, 043539 (2004); arXiv:hep-th/0405034v2 (2004); Y.-F. Cai, H. Li, Y.-S. Piao, and X. Zhang, Phys. Lett. B, 646, 141–144 (2007); arXiv:gr-qc/0609039v5 (2006); Y.-F. Cai, T. Qiu, Y.-S. Piao, M. Li, and X. Zhang, JHEP, 0710, 071 (2007); arXiv:0704.1090v1 [gr-qc] (2007); X. Zhang, Phys. Rev. D, 74, 103505 (2006); arXiv:astro-ph/0609699v2 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  13. I. Ya. Aref’eva and I. V. Volovich, Theor. Math. Phys., 155, 503–511 (2008); arXiv:hep-th/0612098v1 (2006); R. Kallosh, J. U. Kang, A. Linde, and V. Mukhanov, J. Cosmol. Astropart. Phys., 0804, 018 (2008); arXiv:0712.2040v3 [hep-th] (2007).

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Weinberg, Phys. Rev. D, 77, 123541 (2008); arXiv:hep-th/0804.4291v2 [hep-th] (2008); J. Z. Simon, Phys. Rev. D, 41, 3720–3733 (1990); P. Creminelli, G. D’Amico, J. Noreña, and F. Vernizzi, J. Cosmol. Astropart. Phys., 0902, 018 (2009); arXiv:0811.0827v3 [astro-ph] (2008).

    Article  MathSciNet  ADS  Google Scholar 

  15. Z.-K. Guo, Y.-S. Piao, and Y.-Z. Zhang, Phys. Lett. B, 594, 247–251 (2004); arXiv:astro-ph/0404225v2 (2004).

    Article  ADS  Google Scholar 

  16. I.Ya. Aref’eva, A. S. Koshelev, and S. Yu. Vernov, Phys. Lett. B, 628, 1–10 (2005); arXiv:astro-ph/0505605v2 (2005).

    Article  ADS  Google Scholar 

  17. A. A. Starobinsky, JETP Lett., 37, 66–69 (1983); V. Müller, H. J. Schmidt, and A. A. Starobinsky, Class. Q. Grav., 7, 1163–1168 (1990).

    ADS  Google Scholar 

  18. L. Bianchi, Mem. Soc. Ital. delle Scienze (3), 11, 267–352 (1898); Gen. Relativity Gravitation, 33, 2171–2253 (2001); L. Bianchi, Lezioni sulla teoria dei gruppi continui finiti di trasformazioni, Spoerri, Pisa (1918).

    Google Scholar 

  19. G. F. R. Ellis and H. van Elst, “Cosmological models,” in: Theoretical and Observational Cosmology (NATO Adv. Study Inst. Ser. C, Vol. 541, M. Lachièze-Rey, ed.), Kluwer, Boston (1999), pp. 1–116; arXiv:grqc/9812046v5 (1998); G. F. R. Ellis, Gen. Relativity Gravitation, 38, 1003–1015 (2006).

    Google Scholar 

  20. J. Wainwright and G. F. R. Ellis, eds., Dynamical Systems in Cosmology, Cambridge Univ. Press, Cambridge (1997).

    Google Scholar 

  21. C. Germani and A. Kehagias, J. Cosmol. Astropart. Phys., 0903, 028 (2009); arXiv:0902.3667v2 [astro-ph.CO] (2009); T. S. Koivisto, D. F. Mota, and C. Pitrou, JHEP, 0909, 092 (2009); arXiv:0903.4158v2 [astro-ph.CO] (2009).

    Article  ADS  Google Scholar 

  22. R. M. Wald, Phys. Rev. D, 28, 2118–2120 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  23. I. Moss and V. Sahni, Phys. Lett. B, 178, 159–162 (1986); J. Wainwright and L. Hsu, Class. Q. Grav., 6, 1409–1431 (1989); A. A. Coley, J. Wainwright, and L. Hsu, Class. Q. Grav., 9, 651–665 (1992); Y. Kitada and K. Maeda, Phys. Rev. D, 45, 1416–1419 (1992); Y. Kitada and K. Maeda, Class. Q. Grav., 10, 703–734 (1993); A. D. Rendall, “Mathematical properties of cosmological models with accelerated expansion,” in: Analytical and Numerical Approaches to Mathematical Relativity (Lect. Notes Phys., Vol. 692, J. Frauendiener, D. J. W. Giulini, and V. Perlick, eds.), Springer, Berlin (2006), pp. 141–155; arXiv:gr-qc/0408053v1 (2004).

    Article  ADS  Google Scholar 

  24. T. S. Pereira, C. Pitrou, and J.-P. Uzan, J. Cosmol. Astropart. Phys., 0709, 006 (2007); arXiv:0707.0736v1 [astro-ph] (2007).

    Article  ADS  Google Scholar 

  25. I.Ya. Aref’eva, N. V. Bulatov, L. V. Joukovskaya, and S. Yu. Vernov, Phys. Rev. D, 80, 083532 (2009); arXiv:0903.5264v3 [hep-th] (2009).

    Article  ADS  Google Scholar 

  26. A. M. Lyapunov, The General Problem of the Stability of Motion [in Russian], GITTL, Moscow (1950); English transl., Taylor and Francis, London (1992); L. S. Pontrjagin, Ordinary Differential Equations [in Russian], Nauka, Moscow (1982).

    MATH  Google Scholar 

  27. S. Yu. Vernov, Theor. Math. Phys., 155, 544–556 (2008); arXiv:astro-ph/0612487v3 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  28. J. Wainwright and W. C. Lim, J. Hyperbolic Differ. Equat., 2, 437–469 (2005); arXiv:gr-qc/0409082v1 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  29. O. DeWolfe, D. Z. Freedman, S. S. Gubser, and A. Karch, Phys. Rev. D, 62, 046008 (2000); arXiv:hep-th/9909134v4 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  30. A. G. Muslimov, Class. Q. Grav., 7, 231–237 (1990); D. S. Salopek and J. R. Bond, Phys. Rev. D, 42, 3936–3962 (1990); A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure, Cambridge Univ. Press, Cambridge (2000); D. Bazeia, M. J. dos Santos, and R. F. Ribeiro, Phys. Lett. A, 208, 84–88 (1995); arXiv:hep-th/0311265v1 (2003); A. Brandhuber and K. Sfetsos, JHEP, 9910, 013 (1999); arXiv:hep-th/9908116v2 (1999); D. Bazeia, C. B. Gomes, L. Losano, and R. Menezes, Phys. Lett. B, 633, 415–419 (2006); arXiv:astro-ph/0512197v1 (2005); K. Skenderis and P. K. Townsend, Phys. Rev. D, 74, 125008 (2006); arXiv:hep-th/0609056v2 (2006); D. Bazeia, L. Losano, and J. J. Rodrigues, “First-order formalism for scalar field in cosmology,” arXiv:hep-th/0610028v1 (2006); A. S. Mikhailov, Yu. S. Mikhailov, M. N. Smolyakov, and I. P. Volobuev, Class. Q. Grav., 24, 231–242 (2007); arXiv:hep-th/0602143v3 (2006); P. K. Townsend, Class. Q. Grav., 25, 045017 (2008); arXiv:0710.5178v2 [hep-th] (2007).

    Article  MathSciNet  ADS  Google Scholar 

  31. I. Ya. Aref’eva, S. Yu. Vernov, and A. S. Koshelev, Theor. Math. Phys., 148, 895–909 (2006); arXiv:astro-ph/0412619v5 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  32. I. Ya. Aref’eva, “Nonlocal string tachyon as a model for cosmological dark energy,” in: p-Adic Mathematical Physics (AIP Conf. Proc., Vol. 826, A. Yu. Khrennikov, Z. Rakić, and I. V. Volovich, eds.), AIP, Melville, N. Y. (2006), pp. 301–311; arXiv:astro-ph/0410443v2 (2004); “Stringy model of cosmological dark energy,” in: Particles, Strings, and Cosmology (AIP Conf. Proc., Vol. 957, A. Rajantie, P. Dauncey, C. Contaldi, and H. Stoica, eds.), AIP, Melville, N. Y. (2007), pp. 297–300; arXiv:0710.3017v1 [hep-th] (2007).

    Google Scholar 

  33. I. Ya. Aref’eva, Theor. Math. Phys., 163, 697–704 (2010).

    Article  Google Scholar 

  34. I. Ya. Aref’eva and L. V. Joukovskaya, JHEP, 0510, 087 (2005); arXiv:hep-th/0504200v2 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  35. I. Ya. Aref’eva, A. S. Koshelev, D. M. Belov, and P. B. Medvedev, Nucl. Phys. B, 638, 3–20 (2002); arXiv:hep-th/0011117v3 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. I. Ya. Aref’eva, D. M. Belov, A. A. Giryavets, A. S. Koshelev, and P. B. Medvedev, “Noncommutative field theories and (super)string field theories,” in: Particles and Fields (G. A. Alves, O. J. P. Eboli, and V. O. Rivelles, eds.), World Scientific, Singapore (2002), pp. 1–163; arXiv:hep-th/0111208v2 (2001).

    Google Scholar 

  37. I. Ya. Aref’eva, L. V. Joukovskaya, and S. Yu. Vernov, J. Phys. A, 41, 304003 (2008); arXiv:0711.1364v3 [hep-th] (2007); D. J. Mulryne and N. J. Nunes, Phys. Rev. D, 78, 063519 (2008); arXiv:0805.0449v2 [hep-th] (2008); S. Yu. Vernov, Class. Q. Grav., 27, 035006 (2010); arXiv:0907.0468v4 [hep-th] (2009).

    Article  MathSciNet  Google Scholar 

  38. I. Ya. Aref’eva, A. S. Koshelev, and L. V. Joukovskaya, JHEP, 0309, 012 (2003); arXiv:hep-th/0301137v2 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  39. K. Ohmori, Phys. Rev. D, 69, 026008 (2004); arXiv:hep-th/0306096v2 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  40. B. Zwiebach, Ann. Phys., 267, 193–248 (1998); arXiv:hep-th/9705241v1 (1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ya. Aref’eva.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 163, No. 3, pp. 475–494, June, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aref’eva, I.Y., Bulatov, N.V. & Vernov, S.Y. Stable exact solutions in cosmological models with two scalar fields. Theor Math Phys 163, 788–803 (2010). https://doi.org/10.1007/s11232-010-0063-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-010-0063-x

Keywords

Navigation