Skip to main content
Log in

Tunneling/WKB and anomaly methods for Rindler and de sitter space-times

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the WKB/tunneling method explicitly in the context of its application to the Rindler and de Sitter space-times. We also present two gravitational anomaly methods (consistent and covariant). The anomaly methods applied to the Rindler space-time do not reproduce the expected Unruh radiation, because the Rindler space-time does not have an anomaly. The consistent and the covariant anomaly methods give different results for the de Sitter space-time. In contrast to them, the WKB/tunneling method is a semiclassical calculation in which the radiation is regarded as a tunneling of quantum fields across the horizon. The tunneling method is applicable in all the indicated cases. But to recover the correct Gibbons-Hawking temperature, a previously overlooked temporal piece that contributes to the total action must be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. W. Hawking, Comm. Math. Phys., 43, 199–220 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  2. W. G. Unruh, Phys. Rev. D, 14, 870–892 (1976).

    Article  ADS  Google Scholar 

  3. G. W. Gibbons and S. W. Hawking, Phys. Rev. D, 15, 2738–2751 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  4. D. G. Boulware, Phys. Rev. D, 11, 1404–1423 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  5. J. B. Hartle and S. W. Hawking, Phys. Rev. D, 13, 2188–2203 (1976).

    Article  ADS  Google Scholar 

  6. W. G. Unruh and N. Weiss, Phys. Rev. D, 29, 1656–1662 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  7. N. B. Narozhny, A. M. Fedotov, B. M. Karnakov, V. D. Mur, and V. A. Belinskii, Phys. Rev. D, 65, 025004 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  8. P. Kraus and F. Wilczek, Nucl. Phys. B, 433, 403–420 (1995).

    Article  ADS  Google Scholar 

  9. K. Srinivasan and T. Padmanabhan, Phys. Rev. D, 60, 024007 (1999); S. Shankaranarayanan, T. Padmanabhan, and K. Srinivasan, Class. Q. Grav., 19, 2671–2687 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  10. G. E. Volovik, JETP Lett., 69, 705–713 (1999).

    Article  ADS  Google Scholar 

  11. V. A. Berezin, A. M. Boyarsky, and A. Yu. Neronov, Gravit. Cosmol., 5, 16–22 (1999).

    MATH  MathSciNet  ADS  Google Scholar 

  12. M. K. Parikh and F. Wilczek, Phys. Rev. Lett., 85, 5042–5045 (2000); M. K. Parikh, Internat. J. Mod. Phys. D, 13, 2351–2354 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  13. A. J. M. Medved and E. C. Vagenas, Modern Phys. Lett. A, 20, 1723–1728, 2449–2453 (2005); M. Arzano, A. J. M. Medved, and E. C. Vagenas, JHEP, 0509, 037 (2005); E. C. Vagenas, Nuovo Cimento B, 117, 899 (2002).

    Article  MATH  ADS  Google Scholar 

  14. M. Angheben, M. Nadalini, L. Vanzo, and S. Zerbini, JHEP, 0505, 014 (2005); M. Nadalini, L. Vanzo, and S. Zerbini, J. Phys. A, 39, 6601–6608 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  15. R. Banerjee and B. R. Majhi, JHEP, 0806, 095 (2008); Phys. Lett. B, 662, 62–65 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  16. R. Banerjee and B. R. Majhi, Phys. Lett. B, 675, 243–245 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  17. T. Pilling, Phys. Lett. B, 660, 402–406 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  18. B. Zhang, Q.-Y. Cai, and M.-S. Zhan, Phys. Lett. B, 665, 260–263 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  19. R. Banerjee, B. R. Majhi, and S. Samanta, Phys. Rev. D, 77, 124035 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  20. V. Akhmedova, T. Pilling, A. de Gill, and D. Singleton, Phys. Lett. B, 673, 227–231 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  21. E. T. Akhmedov, T. Pilling, and D. Singleton, Internat. J. Mod. Phys. D, 17, 2453–2458 (2008).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. V. Akhmedova, T. Pilling, A. de Gill, and D. Singleton, Phys. Lett. B, 666, 269–271 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  23. S. P. Robinson and F. Wilczek, Phys. Rev. Lett., 95, 011303 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  24. E. C. Vagenas and S. Das, JHEP, 0610, 025 (2006); S. Das, S. P. Robinson, and E. C. Vagenas, Internat. J. Mod. Phys. D, 17, 533–539 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  25. G. E. Volovik, “Is there analogy between quantized vortex and black hole?” arXiv:gr-qc/9510001v2 (1995).

  26. S. Iso, H. Umetsu, and F. Wilczek, Phys. Rev. Lett., 96, 151302 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  27. K. Murata and J. Soda, Phys. Rev. D, 74, 044018 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  28. S. Iso, H. Umetsu, and F. Wilczek, Phys. Rev. D, 74, 044017 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  29. S. M. Christensen and S. A. Fulling, Phys. Rev. D, 15, 2088–2104 (1977).

    Article  ADS  Google Scholar 

  30. L. Alvarez-Gaumé and E. Witten, Nucl. Phys. B, 234, 269–330 (1983).

    Article  ADS  Google Scholar 

  31. R. A. Bertlmann and E. Kohlprath, Ann. Phys., 288, 137–163 (2001).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. S.-Q. Wu, J.-J. Peng, and Z.-Y. Zhao, Class. Q. Grav., 25, 135001 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  33. R. Banerjee and S. Kulkarni, Phys. Rev. D, 77, 024018 (2008); Phys. Lett. B, 659, 827–831 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  34. E. T. Akhmedov, V. Akhmedova, D. Singleton, and T. Pilling, Internat. J. Mod. Phys. A, 22, 1705–1715 (2007).

    Article  MATH  ADS  Google Scholar 

  35. E. T. Akhmedov, V. Akhmedova, and D. Singleton, Phys. Lett. B, 642, 124–128 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  36. B. D. Chowdhury, Pramana, 70, 3–26 (2008).

    Article  ADS  Google Scholar 

  37. S. Ghosh, “Unifying the tunneling and anomaly phenomena in Hawking radiation,” arXiv:0804.2999v3 [hep-th] (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Akhmedova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhmedova, V.E., Pilling, T., de Gill, A. et al. Tunneling/WKB and anomaly methods for Rindler and de sitter space-times. Theor Math Phys 163, 774–781 (2010). https://doi.org/10.1007/s11232-010-0061-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-010-0061-z

Keywords

Navigation