Skip to main content
Log in

New and old results in resultant theory

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Resultants play an increasingly important role in modern theoretical physics: they appear whenever we have nonlinear (polynomial) equations, nonquadratic forms, or non-Gaussian integrals. Being a research subject for more than three hundred years, resultants are already quite well studied, and many explicit formulas, interesting properties, and unexpected relations are known. We present a brief overview of these results, from classical ones to those obtained relatively recently. We emphasize explicit formulas that could bring practical benefit in future physical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Dolotin and A. Morozov, Introduction to Non-Linear Algebra, World Scientific, Hackensack, N. J. (2007); arXiv:hep-th/0609022v4 (2006).

  2. E. Bézout, Théorie générale des equations algébriques, De l’Imprimerie de Ph.-D. Pierres, Paris (1779); J. J. Sylvester, Philos. Magazine, 16, 132–135 (1840); “A method of determining by mere inspection the derivatives from two equations of any degree,” in: The Collected Mathematical Papers of James Joseph Sylvester, Vol. 1, Cambridge Univ. Press, Cambridge (1904), pp. 54–57; A. Cayley, Cambridge and Dublin Math. J., 3, 116–120 (1848); F. S. Macaulay, Proc. London Math. Soc., 35, 3–27 (1903); A. L. Dixon, Proc. London Math. Soc., 6, 468–478 (1908).

  3. I. Gel’fand, M. Kapranov, and A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston (1994); I. M. Gel’fand, A. V. Zelevinskij, and M. M. Kapranov, Leningrad Math. J., 2, 499–505 (1991).

    Book  Google Scholar 

  4. A. Yu. Morozov, Sov. Phys. Usp., 35, 671–714 (1992).

    Article  ADS  Google Scholar 

  5. A. Morozov and Sh. Shakirov, JHEP, 0912, 002 (2009); arXiv:0903.2595v1 [math-ph] (2009).

    Article  MathSciNet  ADS  Google Scholar 

  6. P. Aluffi and F. Cukierman, Manuscripta Math., 78, 245–258 (1993); M. Chardin, J. Pure Appl. Algebra, 101, 129–138 (1995); L. Ducos, J. Pure Appl. Algebra, 145, 149–163 (2000); L. Busé and C. D’Andrea, C. R. Math. Acad. Sci. Paris, 338, 287–290 (2004); C. D’ Andrea, T. Krick, and A. Szanto, J. Algebra, 302, 16–36 (2006); arXiv:math/0501281v3 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Vlasov, Theor. Math. Phys., 163, 438–465 (2010); arXiv:0907.4249v2 [math-ph] (2009).

    Article  Google Scholar 

  8. L. I. Nicolaescu, “Notes on the Reidemeister torsion,” http://www.nd.edu/~lnicolae/Torsion.pdf; V. G. Turaev, Russ. Math. Surveys, 41, 119–182 (1986).

  9. A. S. Anokhina, A. Yu. Morozov, and Sh. R. Shakirov, Theor. Math. Phys., 160, 1203–1228 (2009); arXiv:0812.5013v3 [math-ph] (2008).

    Article  MATH  MathSciNet  Google Scholar 

  10. K. Kalorkoti, “On Macaulay form of the resultant,” http://homepages.inf.ed.ac.uk/kk/Reports/Macaulay.pdf.

  11. D. Eisenbud and F.-O. Schreyer, J. Amer. Math. Soc., 16, 537–579 (2003); arXiv:math/0111040v1 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Khetan, J. Pure Appl. Algebra, 198, 237–256 (2005); arXiv:math/0310478v4 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  13. B. Gustafsson and V. G. Tkachev, Comm. Math. Phys., 286, 313–358 (2009); arXiv:0710.2326v2 [math.AG] (2007); A. Morozov and Sh. Shakirov, “Analogue of the identity Log Det = Trace Log for resultants,” arXiv: 0804.4632v3 [math-ph] (2008); “Resultants and contour integrals,” arXiv:0807.4539v1 [math.AG] (2008).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. N. D. Beklemishev, Moscow Univ. Mat. Bull., 37, No. 2, 54–62 (1982); D. Hilbert, Theory of Algebraic Invariants (B. Sturmfels, ed.), Cambridge Univ. Press, Cambridge (1993); H. Derksen and G. Kemper, Invariant Theory and Algebraic Transformation Groups I: Computational Invariant Theory (Encycl. Math. Sci., Vol. 130), Springer, Berlin (2002); B. Sturmfels, Algorithms in Invariant Theory, Springer, Wien (2008).

    MATH  MathSciNet  Google Scholar 

  15. N. Perminov and Sh. Shakirov, “Discriminants of symmetric polynomials,” arXiv:0910.5757v1 [math.AG] (2009); N. S. Perminov, Hypercomplex Numbers in Geometry and Physics, 6, 68–71 (2009).

  16. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables [in Russian], Nauka, Moscow (1979); English transl. prev. ed. (National Bureau of Standards Appl. Math. Ser., Vol. 55), Dover, New York (1972); I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Fizmatlit, Moscow (1963); English transl.: Tables of Integrals, Series, and Products, Acad. Press, New York (1980).

    MATH  Google Scholar 

  17. A. Yu. Morozov and M. N. Serbyn, Theor. Math. Phys., 154, 270–293 (2008).

    Article  MATH  Google Scholar 

  18. B. Sturmfels, Discrete Math., 15, 171–181 (2000); M. Glasser, “The quadratic formula made hard: A less radical approach to solving equations,” arXiv:math/9411224v1 (1994).

    Article  MathSciNet  Google Scholar 

  19. A. Rej and M. Marcolli, “Motives: An introductory survey for physicists,” arXiv:0907.4046v2 [hep-th] (2009).

  20. V. Dolotin and A. Morozov, The Universal Mandelbrot Set: Beginning of the Story,World Scientific, Hackensack, N. J. (2006); “Algebraic geometry of discrete dynamics: The case of one variable,” arXiv:hep-th/0501235v2 (2005); Internat. J. Mod. Phys. A, 23, 3613–3684 (2008); arXiv:hep-th/0701234v1 (2007); A. Morozov, JETP Lett., 86, 745–748 (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Morozov.

Additional information

To simplify our considerations in this paper, we assume that the polynomial equations are homogeneous. In fact, the homogeneity condition is inessential, and the entire theory expounded here can also be formulated for inhomogeneous polynomials.

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 163, No. 2, pp. 222–257, May, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozov, A.Y., Shakirov, S.R. New and old results in resultant theory. Theor Math Phys 163, 587–617 (2010). https://doi.org/10.1007/s11232-010-0044-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-010-0044-0

Keywords

Navigation