Skip to main content
Log in

The two-component Camassa-Holm equation with self-consistent sources and its multisoliton solutions

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive the two-component Camassa-Holm equation with self-consistent sources and its Lax representation. We construct the conservation laws for this equation and present multisoliton solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Camassa and D. D. Holm, Phys. Rev. Lett., 71, 1661–1664 (1993).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. R. Camassa, D. D. Holm, and J. M. Hyman, Adv. Appl. Mech., 31, 1–33 (1994).

    Article  Google Scholar 

  3. B. Fuchssteiner and A. S. Fokas, Phys. D, 4, 47–66 (1981).

    Article  MathSciNet  Google Scholar 

  4. A. Constantin, V. S. Gerdjikov, and R. I. Ivanov, Inverse Problems, 22, 2197–2207 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. A. Parker, Proc. Roy. Soc. London Ser. A, 460, 2929–2957 (2004).

    Article  MATH  ADS  Google Scholar 

  6. A. Constantin and W. Strauss, Comm. Pure Appl. Math., 53, 603–610 (2000).

    Article  MathSciNet  Google Scholar 

  7. R. Beals, D. H. Sattinger, and J. Szmigielski, Inverse Problems, 15, L1–L4 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. A. Constantin, Invent. Math., 166, 523–535 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. R. S. Johnson, Proc. Roy. Soc. London Ser. A, 459, 1687–1708 (2003).

    Article  MATH  ADS  Google Scholar 

  10. Y. S. Li and J. E. Zhang, Proc. Roy. Soc. London Ser. A, 460, 2617–2627 (2004).

    Article  MATH  ADS  Google Scholar 

  11. A. B. Shabat and L. Martínez Alonso, “On the prolongation of a hierarchy of hydrodynamic chains,” in: New Trends in Integrability Partial Solvability (NATO Sci. Ser. II Math. Phys. Chem., Vol. 132, A. B. Shabat, A. González-López, M. Mañas, L. Martinez Alonso, and M. A. Rodriguez, eds.), Kluwer, Dordrecht (2004), pp. 263–280.

    Google Scholar 

  12. R. I. Ivanov, Z. Naturforsch. A, 61a, 133–138 (2006); arXiv:nlin/0601066v1 (2006).

    Google Scholar 

  13. S.-Q. Liu and Y. Zhang, J. Geom. Phys., 54, 427–453 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. M. Chen, S.-Q. Liu, and Y. Zhang, Lett. Math. Phys., 75, 1–15 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. P. J. Olver and P. Rosenau, Phys. Rev. E, 53, 1900–1906 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Constantin and R. I. Ivanov, Phys. Lett. A, 372, 7129–7132 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  17. J. Lin, B. Ren, H.-M. Li, and Y.-S. Li, Phys. Rev. E, 77, 036605 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  18. H. Aratyn, J. F. Gomes, and A. H. Zimerman, J. Phys. A, 39, 1099–1114 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. G. Falqui, J. Phys. A, 39, 327–342 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. J. Escher, O. Lechtenfeld, and Z. Yin, Discrete Contin. Dynam. Systems, 19, 493–513 (2007).

    MATH  MathSciNet  Google Scholar 

  21. V. K. Mel’nikov, Phys. Lett. A, 133, 493–496 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  22. V. K. Mel’nikov, Comm. Math. Phys., 126, 201–215 (1989).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. J. Leon and A. Latifi, J. Phys. A, 23, 1385–1403 (1990).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. D. J. Kaup, Phys. Rev. Lett., 59, 2063–2066 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  25. Y. Zeng, Phys. D, 73, 171–188 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  26. Y. Zeng, W.-X. Ma, and Y. Shao, J. Math. Phys., 42, 2113–2128 (2001).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. M. Blaszak, J. Math. Phys., 36, 4826–4831 (1995).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Y. Zeng, Y. Shao, and W. Xue, J. Phys. A, 36, 5035–5043 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. R. Lin, Y. Zeng, and W.-X. Ma, Phys. A, 291, 287–298 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  30. Y. Huang, Y. Zeng, and O. Ragnisco, J. Phys. A, 41, 355203 (2008).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqin Yao.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 162, No. 1, pp. 75–86, January, 2010. Original article submitted November 21, 2008; revised March 14, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Y., Huang, Y. & Zeng, Y. The two-component Camassa-Holm equation with self-consistent sources and its multisoliton solutions. Theor Math Phys 162, 63–73 (2010). https://doi.org/10.1007/s11232-010-0004-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-010-0004-8

Navigation