Skip to main content
Log in

A new form of the redfield equation for dissipative systems related to the matrix of correlation functions

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

In the Redfield theory framework, we consider the problem of the vibrational dynamics in dissipative systems. We decompose the Hamiltonian of interaction of the observed system with a thermal bath into terms that are products of system transition operators and bath transition operators. Using the decomposition, we construct a correlation function matrix containing all the information about the interaction of the system with the bath and obtain a new operator form of the Redfield equation. We consider the procedure for factoring the interaction operator and constructing the correlation function matrix. Using the diagonalization of the obtained matrix, we give correlated dissipation operators, whose introduction simplifies the form of the Redfield equations. We show that for several problems in which fundamental transition frequencies can be chosen, this procedure significantly reduces the dimensionality of the dissipative dynamics problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Sundström, Progr. Quantum Electron., 24, 187–238 (2000).

    Article  ADS  Google Scholar 

  2. R. S. Knox, J. Photochem. Photobiol. B, 49, 81–88 (1999).

    Article  Google Scholar 

  3. C. E. Crespo-Hernández, B. Cohen, P. M. Hare, and B. Kohler, Chem. Rev., 104, 1977–2020 (2004).

    Article  Google Scholar 

  4. S. K. Pal and A. H. Zewail, Chem. Rev., 104, 2099–2124 (2004).

    Article  Google Scholar 

  5. X. Hu, T. Ritz, A. Damjanovic, and K. Schulten, J. Phys. Chem. B, 101, 3854–3871 (1997).

    Article  Google Scholar 

  6. W. Domcke and G. Stock, “Theory of ultrafast nonadiabatic excited-state processes and their spectroscopic detection in real time,” in: Advances in Chemical Physics (I. Prigogine and S. A. Rice, eds.), Vol. 100, Wiley, New York (1997), pp. 1–169.

    Chapter  Google Scholar 

  7. A. G. Redfield, Adv. Magn. Res., 1, 1–32 (1965).

    Google Scholar 

  8. K. Blum, Density Matrix Theory and Applications: Physics of Atoms and Molecules, Plenum, New York (1981).

    Google Scholar 

  9. W. H. Louisell, Quantum Statistical Properties of Radiation, Wiley, New York (1973).

    Google Scholar 

  10. D. Egorova, A. Kühl, and W. Domcke, Chem. Phys., 268, 105–120 (2001).

    Article  ADS  Google Scholar 

  11. D. Egorova and W. Domcke, J. Photochem. Photobiol. A, 166, 19–31 (2004).

    Article  Google Scholar 

  12. A. Kühl and W. Domcke, J. Chem. Phys., 116, 263–274 (2002).

    Article  ADS  Google Scholar 

  13. U. Weiss, Quantum Dissipative Systems (Ser. Modern Condensed Matter Phys., Vol. 10, 2nd ed.), World Scientific, Singapore (1999).

    MATH  Google Scholar 

  14. G. Lindblad, Comm. Math. Phys., 48, 119–130 (1976).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. V. V. Eremin and I. O. Glebov, Theor. Math. Phys., 153, 1463–1475 (2007).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Glebov.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 161, No. 1, pp. 83–94, October, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glebov, I.O., Eremin, V.V. A new form of the redfield equation for dissipative systems related to the matrix of correlation functions. Theor Math Phys 161, 1393–1402 (2009). https://doi.org/10.1007/s11232-009-0125-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-009-0125-0

Keywords

Navigation