Skip to main content
Log in

The vacuum structure, special relativity theory, and quantum mechanics: A return to the field theory approach without geometry

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We formulate the main fundamental principles characterizing the vacuum field structure and also analyze the model of the related vacuum medium and charged point particle dynamics using the developed field theory methods. We consider a new approach to Maxwell’s theory of electrodynamics, newly deriving the basic equations of that theory from the suggested vacuum field structure principles; we obtain the classical special relativity theory relation between the energy and the corresponding point particle mass. We reconsider and analyze the expression for the Lorentz force in arbitrary noninertial reference frames. We also present some new interpretations of the relations between special relativity theory and quantum mechanics. We obtain the famous quantum mechanical Schrödinger-type equations for a relativistic point particle in external potential and magnetic fields in the semiclassical approximation as the Planck constant ħ → 0 and the speed of light c→ ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Feynman et al., The Feynman Lectures on Gravitation (Based on notes by. F. B. Morinigo and W. G. Wagner, edited by B. Hatfield), Addison-Wesley, Reading, Mass. (1995).

    Google Scholar 

  2. P. G. de Gennes, Superconductivity of Metals and Alloys, Benjamin, New York (1966).

    MATH  Google Scholar 

  3. J. Carstoiu, C. R. Acad. Sci. Paris, 268, 201–204 (1969).

    Google Scholar 

  4. M. A. Markov, “The Mach’s principle and physical vacuum in general relativity,” in: Problems of Theoretical Physics [in Russian] (Essays dedicated to Nikolai N. Bogoliubov on the occasion of his sixtieth birthday), Nauka, Moscow (1969), pp. 26–27.

    Google Scholar 

  5. E. F. Taylor and J. A. Wheeler, Spacetime Physics, Freeman, New York (1992).

    Google Scholar 

  6. B. M. Barbashov et al., Selected Problems of Modern Physics (Proc. 12th Intl. Conf. on Selected Problems of Modern Physics, Sec. 1: Problems of Quantum Field Theory), Joint Inst. Nucl. Res., Dubna (2003).

    Google Scholar 

  7. A. K. Prykarpatsky and N. N. Bogolubov Jr., “The field structure of vacuum, Maxwell equations, and relativity theory aspects: Part 1,” arXiv:0807.3691v9 [gr-qc] (2008).

  8. R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 2, Electrodynamics, Addison-Wesley, Reading, Mass. (1964).

    Google Scholar 

  9. N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields [in Russian], Nauka, Moscow (1973); English transl., Wiley, New York (1980).

    Google Scholar 

  10. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics, McGraw-Hill, New York (1965).

    Google Scholar 

  11. A. I. Akhiezer and V. B. Berestetskiy, Quantum Electrodynamics [in Russian], Nauka, Moscow (1981); English transl. prev. ed., Wiley, New York (1965).

    Google Scholar 

  12. J. Schwinger, Quantum Electrodynamics, Dover, New York (1958).

    MATH  Google Scholar 

  13. I. Bialynicki-Birula, Phys. Rev., 155, 1414–1414 (1967); 166, 1505–1506 (1968).

    Article  ADS  Google Scholar 

  14. A. Sommerfeld, Mechanics: Lectures on Theoretical Physics, Vol. 1, Acad. Press, New York (1952).

    Google Scholar 

  15. L. Brillouin, Relativity Reexamined, Acad. Press, New York (1970).

    Google Scholar 

  16. L. D. Faddeev, Sov. Phys. Usp., 25, 130–142 (1982).

    Article  ADS  Google Scholar 

  17. O. Repchenko, Field Physics or How Is the World Constructed? [in Russian], Galeria, Moscow (2005).

    Google Scholar 

  18. C. H. Brans and R. H. Dicke, Phys. Rev., 124, 925–935 (1961).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. A. A. Logunov, Lectures in Relativity and Gravitation [in Russian], Nauka, Moscow (1987); English transl., Pergamon, Oxford (1990).

    Google Scholar 

  20. V. A. Fock, The Theory of Space, Time, and Gravitation [in Russian], Nauka, Moscow (1961); English transl., Pergamon, New York (1963).

    Google Scholar 

  21. W. Pauli, Theory of Relativity, Pergamon, New York (1958).

    MATH  Google Scholar 

  22. R. Weinstock, Amer. J. Phys., 33, 640–645 (1965).

    Article  MATH  ADS  Google Scholar 

  23. A. R. Lee and T. M. Kalotas, Amer. J. Phys., 43, 434–437 (1975).

    Article  ADS  Google Scholar 

  24. J. M. Lévy-Leblond, Amer. J. Phys., 44, 271–277 (1976).

    Article  ADS  Google Scholar 

  25. N. D. Mermin, Amer. J. Phys., 52, 119–124 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Sen, Amer. J. Phys., 62, 157–162 (1994).

    Article  ADS  Google Scholar 

  27. P. W. Bridgman, Reflections of a Physicist (2nd ed.), Philosophical Library, New York (1955).

    Google Scholar 

  28. A. Chorin and J. Marsden, A Mathematical Introduction to Fluid Mechanics (Texts Appl. Math., Vol. 4), Springer, New York (1993).

    MATH  Google Scholar 

  29. A. K. Prykarpatsky, N. N. Bogolubov Jr., J. Golenia, and U. Taneri, Internat. J. Theoret. Phys., 47, 2882–2897 (2008).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. P. A. M. Dirac, The Principles of Quantum Mechanics, Clarendon, Oxford (1935).

    Google Scholar 

  31. V. A. Fock, Z. Phys., 75, 622–647 (1932).

    Article  MATH  ADS  Google Scholar 

  32. F. A. Berezin, The Method of Second Quantization [in Russian], Nauka, Moscow (1965); English transl. (Pure Appl. Phys., Vol. 24), Acad. Press, New York (1966).

    Google Scholar 

  33. A. K. Prykarpatsky, U. Taneri, and N. N. Bogolubov Jr., Quantum Field Theory with Application to Quantum Nonlinear Optics, World Scientific, Singapore (2002).

    MATH  Google Scholar 

  34. A. Z. Petrov, Dokl. AN USSR, 190, 305 (1970).

    ADS  Google Scholar 

  35. J. C. Maxwell, A Treatise on Electricity and Magnetism, Vols. 1 and 2, Dover, New York (1954).

    Google Scholar 

  36. O. Heaviside, Electromagnetic Theory, Vol. 1, The Electrician Printing, London (1894).

    Google Scholar 

  37. L. Brillouin and R. Lucas, J. Phys. Radium, 27, 229–232 (1966).

    Google Scholar 

  38. R. Burghardt, Acta Phys. Austr., 32, 272–281 (1970).

    Google Scholar 

  39. G. t’Hooft, Introduction to General Relativity, Rinton, Princeton, N. J. (2001); http://www.phys.uu.nl/~thooft/lectures/genrel.pdf.

    MATH  Google Scholar 

  40. D. N. Mermin, It’s About Time: Understanding Einstein’s Relativity, Princeton Univ. Press, Princeton, N. J. (2005).

    MATH  Google Scholar 

  41. B. M. Barbashov and V. V. Nesterenko, Model of a Relativistic String in the Physics of Hadrons [in Russian], Ernergoatomizdat, Moscow (1987); English transl.: Introduction to the Relativistic String Theory, World Scientific, Teaneck, N. J. (1990).

    Google Scholar 

  42. H. Collins, Gravity’s Shadow: The Search for Gravitational Waves, Univ. of Chicago Press, Chicago (2004).

    Google Scholar 

  43. T. Damour, “General relativity and experiment,” in: XIth International Congress on Mathematical Physics (D. Iagolnitzer, ed.), International, Cambridge, Mass. (1995), pp. 37–46.

    Google Scholar 

  44. B. Green, The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory, Norton, New York (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Bogolubov Jr..

Additional information

Dedicated to Academician Nikolai Nikolaevich Bogoliubov in honor of his 100th birthday in sincere recognition of his brilliant talent and impressive contribution to modern nonlinear mathematics and quantum physics

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 160, No. 2, pp. 249–269, August, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogolubov, N.N., Prykarpatsky, A.K. & Taneri, U. The vacuum structure, special relativity theory, and quantum mechanics: A return to the field theory approach without geometry. Theor Math Phys 160, 1079–1095 (2009). https://doi.org/10.1007/s11232-009-0101-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-009-0101-8

Keywords

Navigation