Skip to main content
Log in

Hirota’s virtual multisoliton solutions of N=2 supersymmetric Korteweg-de Vries equations

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that for a = 1 or a = 4, the N=2 supersymmetric Korteweg-de Vries (super-KdV) equations obtained by Mathieu admit Hirota’s n-supersoliton solutions, whose nonlinear interaction does not produce any phase shifts. For initial profiles that cannot be distinguished from a one-soliton solution at times t ≪ 0, we reveal the possibility of a spontaneous decay and transformation into a solitonic solution with a different wave number within a finite time. This paradoxical effect is realized by the completely integrable N=2 super-KdV systems if the initial soliton is loaded with other solitons that are virtual and become manifest through the τ-function as time increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.-A. Laberge and P. Mathieu, Phys. Lett. B, 215, 718–722 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  2. P. Labelle and P. Mathieu, J. Math. Phys., 32, 923–927 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. T. Miwa, M. Jimbo, and E. Date, Solitons: Differential Equations, Symmetries, and Infinite Dimensional Algebras (Cambridge Tracts in Math., Vol. 135), Cambridge Univ. Press, Cambridge (2000).

    MATH  Google Scholar 

  4. M. Błaszak, J. Phys. A, 22, 451–457 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. P. Kersten and J. Krasil’shchik, “Complete integrability of the coupled KdV-mKdV system,” in: Lie Groups, Geometric Structures, and Differential Equations: One Hundred Years After Sophus Lie (Adv. Stud. Pure Math., Vol. 37, T. Morimoto, H. Sato, and K. Yamaguchi, eds.), Math. Soc. Japan, Tokyo (2002), pp. 151–171.

    Google Scholar 

  6. M. A. Ayari, V. Hussin, and P. Winternitz, J. Math. Phys., 40, 1951–1965 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. A. Karasu, S. Yu. Sakovich, and Í. Yurduşen, J. Math. Phys., 44, 1703–1708 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Y. C. Hon and E. G. Fan, Chaos Solitons Fractals, 19, 1141–1146 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  9. W.-P. Hong, Z. Naturforsch., 61a, 125–132 (2006).

    Google Scholar 

  10. Yu. I. Manin and A. O. Radul, Comm. Math. Phys., 98, 65–77 (1985).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. S. Ghosh and D. Sarma, Phys. Lett. B, 522, 189–193 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. T. Inami and H. Kanno, Nucl. Phys. B, 359, 201–217 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. A. V. Kiselev and T. Wolf, Comput. Phys. Comm., 177, 315–328 (2007); arXiv:nlin.SI/0609065v2 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Ibort, L. A. Martínez Alonso, and E. Medina Reus, J. Math. Phys., 37, 6157–6172 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. A. V. Kiselev and T. Wolf, SIGMA, 2, 030 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kiselev.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 159, No. 3, pp. 490–501, June, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiselev, A.V., Hussin, V. Hirota’s virtual multisoliton solutions of N=2 supersymmetric Korteweg-de Vries equations. Theor Math Phys 159, 833–841 (2009). https://doi.org/10.1007/s11232-009-0071-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-009-0071-x

Keywords

Navigation