Skip to main content
Log in

Nonlinear long-wave models for imperfectly bonded layered waveguides

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose a composite lattice model for describing nonlinear waves in a two-layer waveguide with adhesive bonding. We first consider waves in an anharmonic chain of oscillating dipoles and show that the corresponding asymptotic long-wave model for longitudinal waves coincides with the Boussinesq-type equation previously derived for a macroscopic waveguide using the nonlinear elasticity approach. We also show that in this model, there is no simple analogy between long longitudinal and long flexural waves. Then, for a composite lattice, we derive two new model systems of coupled Boussinesq-type equations for long nonlinear longitudinal waves and conjecture that a similar description exists in the framework of dynamic nonlinear elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. R. Khusnutdinova and A. M. Samsonov, Phys. Rev. E, 77, 066603 (2008).

    Google Scholar 

  2. G. V. Dreiden, K. R. Khusnutdinova, A. M. Samsonov, and I. V. Semenova, J. Appl. Phys., 104, 086106 (2008).

    Article  ADS  Google Scholar 

  3. G. V. Dreiden, K. R. Khusnutdinova, A. M. Samsonov, and I. V. Semenova, Strain, DOI: 10.1111/j.1475-1305.2008.00471.x (2009).

  4. K. R. Khusnutdinova, “Wave dynamics of a medium constructed on the basis of a two-row system of particles [in Russian],” in: Deep Refinement of Hydrocarbon Material, Vol. 2, TsNIITEneftekhim, Moscow (1993), pp. 136–145.

    Google Scholar 

  5. A. Askar, Lattice Dynamical Foundations of Continuum Theories (Ser. Theoret. Appl. Mech., Vol. 2), World Scientific, Singapore (1985).

    Google Scholar 

  6. G. A. Maugin, Nonlinear Waves in Elastic Crystals, Oxford Univ. Press, Oxford (1999).

    MATH  Google Scholar 

  7. E. A. Il’yushina, “Toward construction of a theory of elasticity of inhomogeneous solids with microstructure [in Russian],” Candidate’s dissertation, Moscow State Univ., Moscow (1976).

    Google Scholar 

  8. K. R. Khusnutdinova, Vestnik Moskov. Univ. Ser. I Mat. Mekh., No. 2, 71–76 (1992).

  9. T. N. Dragunov, I. S. Pavlov, and A. I. Potapov, Phys. Solid State, 39, 118–124 (1997).

    Article  ADS  Google Scholar 

  10. F. Cöté, V. S. Deshpande, N. A. Fleck, and A. G. Evans, Internat. J. Solids Structures, 43, 6220–6242 (2006).

    Article  Google Scholar 

  11. E. Fermi, J. Pasta, and S. Ulam, “Studies on nonlinear problems: I,” in: Nonlinear Wave Motion (Lect. Appl. Math., Vol. 15, A. C. Newell, ed.), Amer. Math. Soc., Providence, R. I. (1974), pp. 143–156.

    Google Scholar 

  12. Mathematica, Wolfram Mathematica, http://www.wolfram.com, Wolfram Research Inc.

  13. A. M. Samsonov, Sov. Phys. Dokl., 29, 586–587 (1984).

    MATH  ADS  Google Scholar 

  14. A. M. Samsonov, Strain Solitons in Solids and How to Construct Them (Monogr. Surv. Pure Appl. Math., Vol. 117), CRC, Boca Raton, Fla. (2001).

    MATH  Google Scholar 

  15. A. V. Porubov, Amplification of Nonlinear Strain Waves in Solids (Ser. Stab. Vib. Control Syst. Ser. A, Vol. 9), World Scientific, Singapore (2003).

    MATH  Google Scholar 

  16. V. E. Zakharov, Sov. Phys. JETP, 38, 108–110 (1974).

    ADS  Google Scholar 

  17. V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl., 8, 226–235 (1974).

    Article  MATH  Google Scholar 

  18. T. B. Benjamin, J. L. Bona, and J. J. Mahony, Philos. Trans. R. Soc. London Ser. A, 272, 47–78 (1972).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. C. I. Christov, G. A. Maugin, and M. G. Velarde, Phys. Rev. E, 54, 3621–3638 (1996).

    Article  ADS  Google Scholar 

  20. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover, New York (1944).

    MATH  Google Scholar 

  21. E. Volterra and E. C. Zachmanoglou, Dynamics of Vibrations, Charles E. Merrill Books, Columbus (1965).

    Google Scholar 

  22. P. A. Martin, “Thin interface layers: Adhesives, approximations and analysis,” in: Elastic Waves and Ultrasonic Nondestructive Evaluation (S. K. Datta, J. D. Achenbach, and Y. S Rajapakse, eds.), North-Holland, Amsterdam (1990), pp. 217–222.

    Google Scholar 

  23. O. Avila-Pozos and A. B. Movchan, J. Engrg. Math., 45, 155–168 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  24. C. Fochesato, F. Dias, and R. Grimshaw, Phys. D, 210, 96–117 (2005).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Khusnutdinova.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 159, No. 3, pp. 475–489, June, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khusnutdinova, K.R., Samsonov, A.M. & Zakharov, A.S. Nonlinear long-wave models for imperfectly bonded layered waveguides. Theor Math Phys 159, 819–832 (2009). https://doi.org/10.1007/s11232-009-0070-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-009-0070-y

Keywords

Navigation