Skip to main content
Log in

Existence of energy minimums for thin elastic rods in static helical configurations

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We characterize families of solutions of the static Kirchhoff model of a thin elastic rod physically. These families, which are proved to exist, depend on the behavior of the so-called register and also on the radius and pitch. We describe the energy densities for each of the solutions in terms of the elastic properties and geometric shape of the unstrained rod, which allows determining the selection mechanism for the preferred helical configurations. This analysis promises to be a fundamental tool for understanding the close connection between the study of elastic deformations in thin rods and coarse-grained models with widespread applications in the natural sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Improta, V. Barone, K. N. Kudin, and G. E. Scuseria, J. Chem. Phys., 114, 2541–2549 (2001).

    Article  ADS  Google Scholar 

  2. J. Šponer and F. Lankaš, eds., Computational Studies of RNA and DNA (Challenges and Advances in Computational Chemistry and Physics, Vol. 2), Springer, New York (2006).

    Google Scholar 

  3. R. Improta, V. Barone, K. N. Kudin, and G. E. Scuseria, J. Am. Chem. Soc., 123, 3311–3322 (2001).

    Article  Google Scholar 

  4. R. Improta, F. Mele, O. Crescenzi, C. Benzi, and V. Barone, J. Am. Chem. Soc., 124, 7857–7865 (2002).

    Article  Google Scholar 

  5. H. Gohlke and M. F. Thorpe, Biophysical J., 91, 2115–2120 (2006).

    Article  ADS  Google Scholar 

  6. M. Argeri, V. Barone, S. De Lillo, G. Lupo, and M. Sommacal, Phys. D, 238, 1031–1049 (2009).

    Article  MATH  Google Scholar 

  7. E. Langella, R. Improta, and V. Barone, Biophysical J., 87, 3623–3632 (2004).

    Article  ADS  Google Scholar 

  8. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover, New York (1944).

    MATH  Google Scholar 

  9. S. S. Antman, Nonlinear Problems of Elasticity (Appl. Math. Sci., Vol. 107), Springer, New York (1995).

    MATH  Google Scholar 

  10. G. Kirchhoff, Vorlesungen über Mathematische Physik: Mechanik, Teubner, Leipzig (1883).

    Google Scholar 

  11. S. R. Sanghani, K. Zakrzewska, S. C. Harvey, and R. Lavery, Nucleic Acids Res., 24, 1632–1637 (1996).

    Article  Google Scholar 

  12. A. Goriely, M. Nizette, and M. Tabor, J. Nonlinear Sci., 11, 3–45 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. N. Chouaieb, A. Goriely, and J. H. Maddocks, Proc. Natl. Acad. Sci. USA, 103, 9398–9403 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. A. F. Bower, “Applied mechanics of solids,” http://solidmechanics.org (2008).

  15. S. Zhang, X. Zuo, M. Xia, S. Zhao, and E. Zhang, Phys. Rev. E, 70, 051902 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Barone.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 159, No. 3, pp. 336–352, June, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argeri, M., Barone, V., De Lillo, S. et al. Existence of energy minimums for thin elastic rods in static helical configurations. Theor Math Phys 159, 698–711 (2009). https://doi.org/10.1007/s11232-009-0058-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-009-0058-7

Keywords

Navigation