Skip to main content

Quantum entanglement in composite systems

Abstract

We discuss a certain class of models of mesoscopic quantum phenomena that result from associating a particular type of Hamiltonian dynamics with the entangled states of composite systems. Using such models, we can concisely describe the phenomenology of a two-dimensional electron gas, in particular, the quantum Hall effect. We show how such models (if they are regarded as reflecting actual physical principles and not only the phenomenology) can be tested by a quantum teleportation-type experiment. The so-called mesoscopic models stipulate that the dynamics of a two-dimensional gas coupled to an ambient field is captured by a functional of the type Tr[Hρ] + βTr f(ρ), where ρ is the density operator and H is a single-particle Hamiltonian. We use the proposed approach to demonstrate that a suitable quantum teleportation experiment can provide information about the analytic function f. This leads us to view the composite system of an electron gas and an ambient field as a natural quantum computer.

This is a preview of subscription content, access via your institution.

References

  1. A. Sowa, J. Phys. Chem. Solids, 65, 1507–1515 (2004).

    Article  ADS  Google Scholar 

  2. A. Sowa, J. Geom. Phys., 55, 1–18 (2005).

    MATH  Article  ADS  MathSciNet  Google Scholar 

  3. A. Sowa, Russ. J. Math. Phys., 15, 122–127 (2008).

    MathSciNet  Google Scholar 

  4. A. Sowa, Adv. Stud. Theoret. Phys., 1, 433–448 (2007).

    MATH  MathSciNet  Google Scholar 

  5. A. Sowa, Adv. Math. Phys., 2009, Art. ID 514081 (2009).

  6. V. I. Arnold, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1974); English transl. (Grad. Texts in Math., Vol. 60), Springer, New York (1978).

    Google Scholar 

  7. S. Stenholm and K.-A. Suominen, Quantum Approach to Informatics, Wiley, Hoboken, N. J. (2005).

    MATH  Book  Google Scholar 

  8. V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Phys. Rev. D, 52, 4718–4735 (1995).

    Article  ADS  Google Scholar 

  9. J. Schwinger, Proc. Nat. Acad. Sci. USA, 46, 570–579 (1960).

    MATH  Article  ADS  MathSciNet  Google Scholar 

  10. A. Zygmund, Trigonometric Series (Cambridge Math. Lib., Vols. 1 and 2), Cambridge Univ. Press, Cambridge (2002).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sowa.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 159, No. 2, pp. 283–298, May, 2009.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sowa, A. Quantum entanglement in composite systems. Theor Math Phys 159, 654–666 (2009). https://doi.org/10.1007/s11232-009-0053-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-009-0053-z

Keywords

  • composite system
  • nonlocal model
  • quantum entanglement
  • quantum Hall effect