Advertisement

Theoretical and Mathematical Physics

, Volume 156, Issue 1, pp 1081–1088 | Cite as

Analytic approach to the (an)harmonic crystal chains with self-consistent stochastic reservoirs

  • R. FalcaoEmail author
  • A. Francisco Neto
  • E. Pereira
Article

Abstract

We consider the harmonic and anharmonic chains of oscillators with self-consistent stochastic reservoirs and derive an integral representation (à la Feynman-Kac) for the correlations, in particular, for the heat flow. For the harmonic chain, we give a new proof that its thermal conductivity is finite in the steady state. Based on this integral representation for the correlations and a perturbative analysis, the approach is quite general and can be extended to more intricate systems.

Keywords

harmonic crystal anharmonic crystal stochastic reservoirs heat flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Bonetto, J. L. Lebowitz, and L. Rey-Bellet, “Fourier’s law: A challenge to theorists,”; in: Mathematical Physics (A. Fokas, A. Grigoryan, T. Kibble, and B. Zegarlinski, eds.), Imperial College Press, London (2000), pp. 128–150.Google Scholar
  2. 2.
    S. Lepri, R. Livi, and A. Politi, Phys. Rep., 377, 1–80 (2003).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Z. Rieder, J. L. Lebowitz, and E. Lieb, J. Math. Phys., 8, 1073–1078 (1967).CrossRefADSGoogle Scholar
  4. 4.
    F. Bonetto, J. L. Lebowitz, and J. Lukkarinen, J. Stat. Phys., 116, 783–813 (2004).zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    E. Pereira and R. Falcao, Phys. Rev. E, 70, 046105 (2004).Google Scholar
  6. 6.
    E. Pereira and R. Falcao, Phys. Rev. Lett., 96, 100601 (2006).CrossRefADSGoogle Scholar
  7. 7.
    A. Francisco Neto, H. C. F. Lemos, and E. Pereira, J. Phys. A, 39, 9399–9410 (2006).zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    F. Barros, H. C. F. Lemos, and E. Pereira, Phys. Rev. E, 74, 052102 (2006).Google Scholar
  9. 9.
    J. Snyders and M. Zakai, SIAM J. Appl. Math., 18, 704–714 (1970).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer, Berlin (2003).Google Scholar
  11. 11.
    J. Dimock, J. Stat. Phys., 58, 1181–1207 (1990).zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    P. A. Faria da Veiga, M. O’Carroll, E. Pereira, and R. Schor, Comm. Math. Phys., 220, 377–402 (2001).zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    R. Schor, J. C. A. Barata, P. A. Faria da Veiga, and E. Pereira, Phys. Rev. E, 59, 2689–2694 (1999).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© MAIK/Nauka 2008

Authors and Affiliations

  1. 1.Centro de Formação de ProfessoresUFRB AmargosaAmargosaBrazil
  2. 2.Núcleo de FísicaUFS ItabaianaItabaianaBrazil
  3. 3.Departamento de Física-ICExUFMGBelo HorizonteBrazil

Personalised recommendations