Advertisement

Theoretical and Mathematical Physics

, Volume 156, Issue 1, pp 1075–1080 | Cite as

Integrable model of a two-dimensional singular spherical oscillator in a constant magnetic field

  • K. S. Aramyan
Article

Abstract

We propose an analogue of a two-dimensional singular oscillator (Smorodinsky-Winternitz oscillator) on a sphere, which is exactly solvable in the classical sense both without and with a constant magnetic field. We find the explicit classical solutions.

Keywords

singular oscillator magnetic field integrable model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras [in Russian], Nauka, Moscow (1990); English transl., Birkhäuser, Basel (1990).Google Scholar
  2. 2.
    V. I. Arnol’d, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1989); English transl. prev. ed. (Grad. Texts Math., Vol. 60), Springer, New York (1978).MATHGoogle Scholar
  3. 3.
    P. W. Higgs, J. Phys. A, 12, 309–323 (1979); H. I. Leemon, J. Phys. A, 12, 489–501 (1979).MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    E. Schrödinger, Proc. Roy. Irish Soc., 46, 9–16 (1940); 46, 183–206 (1941); 47, 53–54 (1941).MATHGoogle Scholar
  5. 5.
    S. Bellucci and A. Nersessian, Phys. Rev. D, 67, 5013 (2003).Google Scholar
  6. 6.
    S. Bellucci, A. Nersessian, and A. Yeranyan, Phys. Rev. D, 70, 5013 (2004).Google Scholar
  7. 7.
    S. Bellucci, A. Nersessian, and A. Yeranyan, Phys. Rev. D, 70, 5006 (2004).ADSGoogle Scholar
  8. 8.
    M. A. Alexanyan and K. S. Aramyan, J. Contemp. Phys., 42, 49–54 (2007).CrossRefGoogle Scholar
  9. 9.
    A. Nersessian and A. Yeranyan, J. Phys. A, 37, 2791–2801 (2004).MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    L. Mardoyan and A. Nersessian, Phys. Rev. B, 72, 3303 (2005).CrossRefGoogle Scholar
  11. 11.
    S. Bellucci, L. Mardoyan, and A. Nersessian, Phys. Lett. B, 636, 137–141 (2006).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    L. Mardoyan, A. Nersessian, and A. Yeranyan, Phys. Lett. A, 366, 30–35 (2007).CrossRefADSGoogle Scholar
  13. 13.
    R. B. Laughlin, Phys. Rev. Lett., 50, 1395–1398 (1983).CrossRefADSGoogle Scholar
  14. 14.
    S. C. Zhang and J. P. Hu, Science, 294, No. 5543, 823–828 (2001).CrossRefADSGoogle Scholar
  15. 15.
    P. Winternitz, Ya. A. Smorodinskii, M. Uhliř, and I. Friš, Sov. J. Nucl.Phys., 4, 444–450 (1967); J. Fris, V. Mandrasov, Ya. A. Smorodinsky, M. Uhlir, and P. Winternitz, Phys. Lett., 16, 354–356 (1965).Google Scholar
  16. 16.
    L. D. Landau and E. M. Lifshitz, Mechanics [in Russian] (Vol. 5, Part 1 of Theoretical Physics), Nauka, Moscow (1973); English transl. prev. ed., Pergamon, Oxford (1960).Google Scholar
  17. 17.
    H. B. Dwight, Tables of Integrals and Other Mathematical Data (4th ed.), Macmillan, New York (1961).Google Scholar

Copyright information

© MAIK/Nauka 2008

Authors and Affiliations

  1. 1.Artsakh State UniversityStepanakertRussia

Personalised recommendations