Skip to main content
Log in

An A structure on simplicial complexes

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a discrete (finite-difference) analogue of differential forms defined on simplicial complexes, in particular, on triangulations of smooth manifolds. Various operations are explicitly defined on these forms including the exterior differential d and the exterior product ∧. The exterior product is nonassociative but satisfies a more general relation, the so-called A structure. This structure includes an infinite set of operations constrained by the nilpotency relation (d + ∧ + m + …)n = 0 of the second degree, n = 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Comm. Math. Phys., 118, 411–449 (1988); “Mirror manifolds and topological field theory,” arXiv:hep-th/9112056v1 (1991); A. Losev and I. Polyubin, Internat. J. Mod. Phys. A, 10, 4161–4178 (1995); arXiv:hep-th/9305079v1 (1993); M. Alexandrov, M. Kontsevich, A. Schwarz, and O. Zaboronsky, Internat. J. Mod. Phys. A, 12, 1405–1429 (1997); arXiv:hep-th/9502010v2 (1995); A. Losev, N. Nekrasov, and S. Shatashvili, Nucl. Phys. B, 534, 549–611 (1998); arXiv:hep-th/9711108v2 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. C. Becchi, A. Rouet, and R. Stora, Phys. Lett. B, 52, 344–346 (1974); Comm. Math. Phys., 42, 127–162 (1975); I. V. Tyutin, “Gauge invariance in field theory and statistical physics in the operator formulation [in Russian],” Preprint No. 39, FIAN AN SSSR, Moscow (1975); R. Stora, “Algebraic structure and topological origin of anomalies,” in: Progress in Gauge Field Theory (NATO Adv. Sci. Inst. Ser. B: Phys., Vol. 115, G.’ t Hooft et al., eds.), Plenum, New York (1984), pp. 543–562; I. A. Batalin and G. A. Vilkovisky, Nucl. Phys. B, 234, 106–124 (1984); A. Schwarz, Comm. Math. Phys., 155, 249–260 (1993); arXiv:hep-th/9205088v1 (1992).

    Article  ADS  Google Scholar 

  3. J. D. Stasheff, Trans. Amer. Math. Soc., 108, 275–292, 293–312 (1963); “Differential graded Lie algebras, quasi-Hopf algebras, and higher homotopy algebras,” in: Quantum Groups (Lect. Notes Math., Vol. 1510, P. P. Kulish, ed.), Springer, Berlin (1992), pp. 120–137; E. Getzler and J. D. S. Jones, Illinois J. Math., 34, 256–283 (1990); B. Keller, Homology Homotopy Appl., 3, 1–35 (2001); Addendum, 4, 25–28 (2002); arXiv:math/9910179v2 [math.RA] (1999); T. Tradler and M. Zeinalian (Appendix: D. Sullivan), Algebr. Geom. Topol., 7, 233–260 (2007); arXiv:math/0309455v2 [math.AT] (2003).

    Article  MathSciNet  Google Scholar 

  4. A. Losev, Lectures at Dombai and Dubna Schools (unpublished) (2004).

  5. L. S. Pontryagin, Foundations of Combinatorial Topology [in Russian], Gostekhizdat., Moscow (1947); English transl., Graylock, Rochester, N. Y. (1952); V. V. Prasolov, Elements of Combinatorial and Differential Topology [in Russian], MTsNMO, Moscow (2004); English transl. (Grad. Stud. Math., Vol. 74), Amer. Math. Soc., Providence, R. I. (2006); Elements of Homology Theory [in Russian], MTsNMO, Moscow (2004); English transl. (Grad. Stud. Math., Vol. 81), Amer. Math. Soc., Providence, R. I. (2007).

    Google Scholar 

  6. J. Dodziuk, Amer. J. Math., 98, 79–104 (1976); D. H. Adams, Phys. Rev. Lett., 78, 4155–4158 (1997); “Rtorsion and linking numbers from simplicial abelian gauge theories,” arXiv:hep-th/9612009v1 (1996); S. Sen, S. Sen, J. C. Sexton, and D. H. Adams, Phys. Rev. E, 61, 3174–3185 (2000); arXiv:hep-th/0001030v1 (2000); R. Hiptmair, Discrete Hodge Operators: An Algebraic Perspective, PIER, EMW Publ., Cambridge, Mass., (2001), pp. 247–269; V. de Beauce and S. Sen, “Discretising geometry and preserving topology I: A discrete exterior calculus,” arXiv:hep-th/0403206v2 (2004); “Discretising differential geometry via a new product on the space of chains,” arXiv:hep-th/0610065v1 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Kozak, Discretization of Chern-Simons Like Theories (unpublished) (2004–2006); P. Mnev, “Notes on symplicial BF theory,” arXiv:hep-th/0610326v3 (2006).

  8. V. Dolotin and A. Morozov, Introduction to Non-Linear Algebra, World Scientific, Hackensack, N. J. (2007); arXiv:hep-th/0609022v4 (2006).

    Google Scholar 

  9. V. Dolotin, A. Morozov, and Sh. Shakirov, “Higher nilpotent analogues of A -structure,” arXiv:0704.2884v3 (2007).

  10. B. Zumino, “Chiral anomalies and differential geometry,” in: Relativity, Groups, and Topology II (B. S. DeWitt and R. Stora, eds.), North-Holland, Amsterdam (1984), pp. 1291–1322; A. Yu. Morozov, Sov. Phys. Uspekhi, 29, 993–1039 (1987); D. Krotov, A. Losev, and A. Gorodentsev, “Quantum field theory as effective BV theory from Chern-Simons,” arXiv:hep-th/0603201v2 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Dolotin.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 156, No. 1, pp. 3–37, July, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolotin, V.V., Morozov, A.Y. & Shakirov, S.R. An A structure on simplicial complexes. Theor Math Phys 156, 965–995 (2008). https://doi.org/10.1007/s11232-008-0093-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-008-0093-9

Keywords

Navigation