Skip to main content
Log in

Entanglement measures based on observable correlations

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

By regarding quantum states as communication channels and using observable correlations quantitatively expressed by mutual information, we introduce a hierarchy of entanglement measures that includes the entanglement of formation as a particular instance. We compare the maximal and minimal measures and indicate the conceptual advantages of the minimal measure over the entanglement of formation. We reveal a curious feature of the entanglement of formation by showing that it can exceed the quantum mutual information, which is usually regarded as a theoretical measure of total correlations. This places the entanglement of formation in a broader scenario, highlights its peculiarity in relation to pure-state ensembles, and introduces a competing definition with intrinsic informational significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev., 47, 777–780 (1935).

    Article  MATH  ADS  Google Scholar 

  2. E. Schrödinger, Proc. Cambridge Philos. Soc., 31, 555–563 (1935); 32, 446–452 (1936); Naturwissenchaften, 23, 807–812, 823–828, 844–849 (1935).

    Article  Google Scholar 

  3. J. S. Bell, Physics, 1, 195 (1964); J. F. Clauser and A. Shimony, Rep. Progr. Phys., 41, 1881–1927 (1978); A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett., 47, 460–463 (1981).

    Google Scholar 

  4. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge (2000).

    MATH  Google Scholar 

  5. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A, 54, 3824–3851 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  6. W. K. Wootters, Quantum Inf. Comput., 1, 27–44 (2001).

    MATH  MathSciNet  Google Scholar 

  7. M. Horodecki, Quantum Inf. Comput., 1, 3–26 (2001).

    MATH  MathSciNet  Google Scholar 

  8. C. M. Caves, C. A. Fuchs, and P. Rungta, Found. Phys. Lett., 14, 199–212 (2001).

    Article  MathSciNet  Google Scholar 

  9. M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett., 80, 5239–5242 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett., 78, 2275–2279 (1997); V. Vedral and M. B. Plenio, Phys. Rev. A, 57, 1619–1633 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. G. Vidal and R. F. Werner, Phys. Rev. A, 65, 032314 (2002).

    Google Scholar 

  12. M. Christandl and A. Winter, J. Math. Phys., 45, 829–840 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. P. W. Shor, Comm. Math. Phys., 246, 453–472 (2004); K. M. R. Audenaert and S. L. Braunstein, Comm. Math. Phys., 246, 443–452 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. H. Everett III, “The theory of the universal wavefunction,” in: The Many-Worlds Interpretation of Quantum Mechanics (B. S. DeWitt and N. Graham, eds.), Princeton Univ. Press, Princeton, N. J. (1973), p. 3.

    Google Scholar 

  15. C. E. Shannon, Bell Syst. Tech. J., 27, 379–423, 623–656 (1948).

    MATH  MathSciNet  Google Scholar 

  16. T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley, New York (1991).

    Book  MATH  Google Scholar 

  17. B. Schumacher, “Information from quantum measurements,” in: Complexity, Entropy, and the Physics of Information (Santa Fe Inst. Studies in Sciences of Complexity, Vol. 8, W. H. Zurek, ed.), Addison-Wesley, Redwood City, Calif. (1990), p. 29.

    Google Scholar 

  18. R. Jozsa, D. Robb, and W. K. Wootters, Phys. Rev. A, 49, 668–677 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. S. Kholevo, Probl. Inf. Transm., 15, 247–253 (1979).

    MathSciNet  Google Scholar 

  20. V. Vedral, Rev. Modern. Phys., 74, 197–234 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Popescu and D. Rorhlich, Phys. Rev. A, 56, R3319–R3321 (1997).

    Article  ADS  Google Scholar 

  22. R. F. Werner, Phys. Rev. A, 40, 4277–4281 (1989).

    Article  ADS  Google Scholar 

  23. K. G. H. Vollbrecht and R. F. Werner, Phys. Rev. A, 64, 062307 (2001).

    Google Scholar 

  24. C. Adami and N. J. Cerf, Phys. Rev. A, 56, 3470–3483 (1997); L. Henderson and V. Vedral, J. Phys. A, 34, 6899–6905 (2001); H. Ollivier and W. H. Zurek, Phys. Rev. Lett., 88, 017901 (2002); B. Groisman, S. Popescu, and A. Winter, Phys. Rev. A, 72, 032317 (2005); B. Schumacher and M. D. Westmoreland, Phys. Rev. A, 74, 042305 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  25. G. Vidal, J. Modern Opt., 47, 355–376 (2000).

    ADS  MathSciNet  Google Scholar 

  26. M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett., 84, 2014–2017 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  27. P. M. Hayden, M. Horodecki, and B. M. Terhal, J. Phys. A, 34, 6891–6898 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. N. li and S. luo, Phys. Rev. A, 76, 032327 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunlong Luo.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 155, No. 3, pp. 453–462, June, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, S. Entanglement measures based on observable correlations. Theor Math Phys 155, 896–904 (2008). https://doi.org/10.1007/s11232-008-0075-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-008-0075-y

Keywords

Navigation