Skip to main content
Log in

Hamiltonian reductions of free particles under polar actions of compact Lie groups

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate classical and quantum Hamiltonian reductions of free geodesic systems of complete Riemannian manifolds. We describe the reduced systems under the assumption that the underlying compact symmetry group acts in a polar manner in the sense that there exist regularly embedded, closed, connected submanifolds intersecting all orbits orthogonally in the configuration space. Hyperpolar actions on Lie groups and on symmetric spaces lead to families of integrable systems of the spin Calogero-Sutherland type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kazhdan, B. Kostant, and S. Sternberg, Comm. Pure Appl. Math., 31, 481–507 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  2. P. I. Etingof, I. B. Frenkel, and A. A. Kirillov Jr., Duke Math. J., 80, 59–90 (1995); arXiv:hep-th/9407047v4 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  3. M. A. Olshanetsky and A. M. Perelomov, Phys. Rep., 71, 313–400 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  4. M. A. Olshanetsky and A. M. Perelomov, Phys. Rep., 94, 313–404 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Gibbons and T. Hermsen, Phys. D, 11, 337–348 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  6. N. Nekrasov, “Infinite-dimensional algebras many-body systems and gauge theories,” in: Moscow Seminar in Mathematical Physics (AMS Transl. Ser. 2, Vol. 191, A. Yu. Morozov and M. A. Olshanetsky, eds.), Amer. Math. Soc., Providence, R. I. (1999), pp. 263–299.

    Google Scholar 

  7. N. Reshetikhin, Lett. Math. Phys., 63, 55–71 (2003); arXiv:math/0202245v1 [math.QA] (2002).

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Alekseevsky, A. Kriegl, M. Losik, and P. W. Michor, Publ. Math. Debrecen, 62, 247–276 (2003); arXiv:math/0102159v1 [math.DG] (2001).

    MATH  MathSciNet  Google Scholar 

  9. A. Oblomkov, Adv. Math., 186, 153–180 (2004); arXiv:math/0202076v2 [math.RT] (2002).

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Hochgerner, “Singular cotangent bundle reduction and spin Calogero-Moser systems,” arXiv:math/0411068v2 [math.SG] (2004).

  11. L. Fehér and B. G. Pusztai, Nucl. Phys. B, 734, 304–325 (2006); arXiv:math-ph/0507062v2 (2005).

    Article  MATH  ADS  Google Scholar 

  12. L. Fehér and B. G. Pusztai, Nucl. Phys. B, 751, 436–458 (2006); arXiv:math-ph/0604073v3 (2006).

    Article  MATH  ADS  Google Scholar 

  13. L. Fehér and B. G. Pusztai, Lett. Math. Phys., 79, 263–277 (2007); arXiv:math-ph/0609085v2 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. R. Palais and C.-L. Terng, Trans. Amer. Math. Soc., 300, 771–789 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  15. L. Conlon, J. Differential Geom., 5, 135–147 (1971).

    MATH  MathSciNet  Google Scholar 

  16. J. Szenthe, Period. Math. Hungar., 15, 281–299 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  17. E. Heintze, R. Palais, C.-L. Terng, and G. Thorbergsson, “Hyperpolar actions on symmetric spaces,” in: Geometry, Topology, and Physics for Raoul Bott (Conf. Proc. Lecture Notes Geom. Topology: IV, S.-T. Yau, ed.), International Press, Cambridge, Mass. (1995), pp. 214–245.

    Google Scholar 

  18. A. Kollross, “Polar actions on symmetric spaces,” arXiv:math/0506312v2 [math.DG] (2005).

  19. S. Hochgerner, “Spinning particles in a Yang-Mills field,” arXiv:math/0602062v1 [math.SG] (2006).

  20. A. L. Onishchik, ed., Lie Groups and Lie Algebras I: Foundations of Lie Theory. Lie Transformation Groups [in Russian] (Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya, Vol. 20), VINITI, Moscow (1988); English transl., Springer, Berlin (1997).

    Google Scholar 

  21. J.-P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction (Progr. Math., Vol. 222), Birkhäuser, Boston, Mass. (2004).

    MATH  Google Scholar 

  22. S. Tanimura and T. Iwai, J. Math. Phys., 41, 1814–1842 (2000); arXiv:math-ph/9907005v3 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. N. P. Landsman, Mathematical Topics Between Classical and Quantum Mechanics, Springer, New York (1998).

    Google Scholar 

  24. S. Helgason, Groups and Geometric Analysis (Pure Appl. Math., Vol. 113), Acad. Press, Orlando, Fla. (1984).

    MATH  Google Scholar 

  25. A. W. Knapp, Lie Groups Beyond an Introduction (Progr. Math., Vol. 140), Birkhäuser, Boston, Mass. (2002).

    MATH  Google Scholar 

  26. L. Fehér and B. G. Pusztai, “On the self-adjointness of certain reduced Laplace-Beltrami operators,” Rep. Math. Phys. (to appear); arXiv:0707.2708v2 [math-ph] (2007).

  27. G. Kunstatter, Class. Q. Grav., 9, 1469–1485 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. L. Fehér and B. G. Pusztai, “Twisted spin Sutherland models from quantum Hamiltonian reduction,” arXiv:0711.4015v1 [math-ph] (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Fehér.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 155, No. 1, pp. 161–176, April, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fehér, L., Pusztai, B.G. Hamiltonian reductions of free particles under polar actions of compact Lie groups. Theor Math Phys 155, 646–658 (2008). https://doi.org/10.1007/s11232-008-0054-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-008-0054-3

Keywords

Navigation