Skip to main content
Log in

Noncommutative unitons

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

By Uhlenbeck’s results, every harmonic map from the Riemann sphere S2 to the unitary group U(n) decomposes into a product of so-called unitons: special maps from S2 to the Grassmannians Gr k(ℂn) ⊂ U(n) satisfying certain systems of first-order differential equations. We construct a noncommutative analogue of this factorization, applicable to those solutions of the noncommutative unitary sigma model that are finite-dimensional perturbations of zero-energy solutions. In particular, we prove that the energy of each such solution is an integer multiple of 8π, give examples of solutions that are not equivalent to Grassmannian solutions, and study the realization of non-Grassmannian zero modes of the Hessian of the energy functional by directions tangent to the moduli space of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Zakrzewski, Low Dimensional Sigma Models, Adam Hilger, Bristol (1989).

    MATH  Google Scholar 

  2. J. Davidov and A. G. Sergeev, Russ. Math. Surveys, 48, No. 3, 1–91 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  3. M. A. Guest, “An update on harmonic maps of finite uniton number, via the zero curvature equation,” in: Integrable Systems, Topology, and Physics: A Conference on Integrable Systems in Differential Geometry (Contemp. Math., Vol. 309, M. Guest et al., eds.), Amer. Math. Soc., Providence, R. I. (2002), pp. 85–113.

    Google Scholar 

  4. K. Uhlenbeck, J. Differential Geom., 30, No. 1, 1–50 (1989).

    MATH  MathSciNet  Google Scholar 

  5. G. Valli, Topology, 27, 129–136 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  6. J. A. Harvey, “Komaba lectures on noncommutative solitons and D-branes,” arXiv: hep-th/0102076v1 (2001).

  7. J. M. Gracia-Bondia, J. C. Várilly, and H. Figueroa, Elements of Noncommutative Geometry, Birkhäuser, Boston (2001).

    MATH  Google Scholar 

  8. L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. 3, Pseudodifferential Operators, Springer, Berlin (1985).

    Google Scholar 

  9. O. Lechtenfeld and A. D. Popov, JHEP, 0111, 040 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  10. A. V. Domrin, O. Lechtenfeld, and S. Petersen, JHEP, 0503, 045 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  11. A. V. Domrin, “Moduli spaces of solutions of a noncommutative sigma model,” Theor. Math. Phys. (to appear).

  12. T. Kato, Perturbation Theory for Linear Operators, Springer, New York (1966).

    MATH  Google Scholar 

  13. R. Rochberg and N. Weaver, Proc. Amer. Math. Soc., 129, 2679–2687 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  14. J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press, Princeton, N. J. (1955).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Domrin.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 154, No. 2, pp. 220–239, February, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domrin, A.V. Noncommutative unitons. Theor Math Phys 154, 184–200 (2008). https://doi.org/10.1007/s11232-008-0018-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-008-0018-7

Keywords

Navigation