Skip to main content
Log in

Nonholonomic Riemann and Weyl tensors for flag manifolds

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

On any manifold, any nondegenerate symmetric 2-form (metric) and any nondegenerate skew-symmetric differential form ω can be reduced to a canonical form at any point but not in any neighborhood: the corresponding obstructions are the Riemannian tensor and dω. The obstructions to flatness (to reducibility to a canonical form) are well known for any G-structure, not only for Riemannian or almost symplectic structures. For a manifold with a nonholonomic structure (nonintegrable distribution), the general notions of flatness and obstructions to it, although of huge interest (e.g., in supergravity) were not known until recently, although particular cases have been known for more than a century (e.g., any contact structure is nonholonomically “flat”: it can always be reduced locally to a canonical form). We give a general definition of the nonholonomic analogues of the Riemann tensor and its conformally invariant analogue, the Weyl tensor, in terms of Lie algebra cohomology and quote Premet’s theorems describing these cohomologies. Using Premet’s theorems and the SuperLie package, we calculate the tensors for flag manifolds associated with each maximal parabolic subalgebra of each simple Lie algebra (and in several more cases) and also compute the obstructions to flatness of the G(2)-structure and its nonholonomic superanalogue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hertz, The Principles of Mechanics Presented in a New Form, Macmillan, London (1899).

    MATH  Google Scholar 

  2. H. Poincaré, Rev. Gen. des Sci. Pures et Appl., 8, 734–743 (1897).

    Google Scholar 

  3. A. M. Vershik and V. Ya. Gershkovich, “Nonholonomic dynamical systems, geometry of distributions, and variational problems,” in: Dynamical Systems VII: Integrable Systems: Nonholonomic Dynamical Systems (Encycl. Math. Sci., Vol. 16, V. I. Arnol’d and S. P. Novikov, eds.), Vol. 16, Springer, Berlin (1994), p. 1–85.

    Google Scholar 

  4. A. M. Vershik, “Classical and nonclassical dynamics with constraints,” in: Global Analysis: Studies and Applications I (Lect. Notes Math., Vol. 1108, Yu. G. Borisovich and Yu. E. Gliklikh, eds.), Springer, Berlin (1984), pp. 278–301.

    Google Scholar 

  5. A. Agrachev and Yu. Sachkov, Control Theory from the Geometric Viewpoint (Encycl. Math. Sci., Vol. 87), Springer, Berlin (2004).

    MATH  Google Scholar 

  6. A. M. Bloch, Nonholonomic Mechanics and Control (Interdiscip. Appl. Math., Vol. 24), Springer, New York (2003).

    MATH  Google Scholar 

  7. V. M. Sergeev, The Limits of Rationality: A Thermodynamic Approach to Market Equilibrium [in Russian], Fazis, Moscow (1999).

    Google Scholar 

  8. V. V. Kozlov, Thermal Equilibrium per Gibbs and Poincaré, Institute for Computer Research, Moscow (2002).

    Google Scholar 

  9. V. Sergeev, “The thermodynamical approach to market,” MPIMiS Preprint 76/2006 (translated from the Russian and edited by D. Leites), http://www.mis.mpg.de/preprints/2006/prepr2006_76.html (2006).

  10. D. Leites, Homology Homotopy Appl., 4, 397–407 (2002); arXiv:math/0202213v1 [math.RT] (2002); Proc. Workshop on Mathematical Physics and Geometry (ICTP, Trieste, Italy, March 4–15, 1991) (1991), http://agenda.ictp.trieste.it/agenda/current/fullAgenda.php?ida=a02210.

    MATH  MathSciNet  Google Scholar 

  11. D. Leites and E. Poletaeva, “Supergravities and contact type structures on supermanifolds,” in: 2nd Intl. Conf. on Algebra (Contemp. Math., Vol. 184), Amer. Math. Soc., Providence, R. I. (1995), p. 267–274.

    Google Scholar 

  12. P. Grozman and D. Leites, “From supergravity to ballbearings,” in: Supersymmetries and Quantum Symmetries (Lect. Notes Phys., Vol. 524, J. Wess and E. A. Ivanov, eds.), Springer, Berlin (1999), p. 58–67.

    Google Scholar 

  13. N. Tanaka, J. Math. Soc. Japan, 22, 180–212 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  14. N. Tanaka, J. Math. Kyoto Univ., 10, 1–82 (1970).

    MATH  MathSciNet  Google Scholar 

  15. N. Tanaka, Hokkaido Math. J., 8, No. 1, 23–84 (1979).

    MATH  MathSciNet  Google Scholar 

  16. K. Yamaguchi, “Differential systems associated with simple graded Lie algebras,” in: Progress in Differential Geometry (Adv. Stud. Pure Math., Vol. 22), Math. Soc. Japan, Tokyo (1993), p. 413–494.

    Google Scholar 

  17. K. Yamaguchi and T. Yatsui, “Geometry of higher order differential equations of finite type associated with symmetric spaces,” in: Lie Groups, Geometric Structures, and Differential Equations: One Hundred Years After Sophus Lie (Adv. Stud. Pure Math., Vol. 37, T. Morimoto, H. Sato, and K. Yamaguchi, eds.), Math. Soc. Japan, Tokyo (2002), p. 397–458.

    Google Scholar 

  18. V. Dragovic and B. Gajic, Regul. Chaotic Dyn., 8, 105–123 (2003); arXiv:math-ph/0304018v1 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. P. Grozman, “SuperLie,” http://www.equaonline.com/math/SuperLie (2007).

  20. R. J. Baston, Duke Math. J., 63, 81–112, 113–138 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  21. A. Čap and H. Schichl, Hokkaido Math. J., 29, 453–505 (2000).

    MathSciNet  MATH  Google Scholar 

  22. A. Čap, J. Reine Angew. Math., 582, 143–172 (2005); arXiv:math/0102097v3 [math.DG] (2001).

    MathSciNet  MATH  Google Scholar 

  23. A. Čap and J. Slovák, Math. Scand., 93, No. 1, 53–90 (2003); arXiv:math/0001166v1 [math.DG] (2000).

    MathSciNet  MATH  Google Scholar 

  24. A. Čap, J. Slovák, and V. Souček, Ann. of Math. (2), 154, 97–113 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Čap and J. Slovák, Rend. Circ. Mat. Palermo (2) Suppl., No. 43, 95–101 (1996).

  26. A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky, and E. S. Sokatchev, Harmonic Superspace (Cambridge Monogr. Math. Phys.), Cambridge Univ. Press, Cambridge (2001).

    MATH  Google Scholar 

  27. P. Heslop and P. S. Howe, Class. Q. Grav., 17, 3743–3768 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. K. Ehlers, J. Koiller, R. Montgomery, and P. Rios, “Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization,” in: The Breadth of Symplectic and Poisson Geometry (Progr. Math., Vol. 232, J. E. Marsden and T. S. Ratiu, eds.), Birkhauser, Boston, Mass. (2005), p. 75–120.

    Chapter  Google Scholar 

  29. J. N. Tavares, J. Geom. Phys., 45, 1–23 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. I. M. Shchepochkina, Theor. Math. Phys., 147, 821–838 (2006); arXiv:math/0509472v1 [math.RT] (2005).

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Vacaru, Interactions, Strings, and Isotopies in Higher Order Anisotropic Superspaces, Hadronic Press, Palm Harbor, Fla. (1998).

    MATH  Google Scholar 

  32. A. B. Goncharov, Funct. Anal. Appl., 15, 221–223 (1981); Selecta Math. Soviet., 6, 307–340 (1987).

    Article  MathSciNet  Google Scholar 

  33. B. Kostant, “A generalization of the Bott-Borel-Weil theorem and Euler number multiplets of representations,” in: Conférence Moshé Flato, 1999 (Math. Phys. Stud., Vol. 21), Vol. 1, Quantization, Deformations, and Symmetries, Kluwer, Dordrecht (2000), p. 309–325; Lett. Math. Phys., 52, 61–78 (2000).

    Google Scholar 

  34. S. Sternberg, Lectures on Differential Geometry (2nd ed.), Chelsey, New York (1983).

    MATH  Google Scholar 

  35. V. Guillemin, Trans. Amer. Math. Soc., 116, 544–560 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton Univ. Press, Princeton, N. J. (1992).

    Google Scholar 

  37. Yu. Manin, Gauge Field Theory and Complex Geometry (Grundlehren Math. Wiss., Vol. 289), Springer, Berlin (1997).

    MATH  Google Scholar 

  38. D. Leites and I. Shchepochkina, “Classification of the simple Lie superalgebras of vector fields,” Preprint MPIM-2003-28 (2003).

  39. I. Shchepochkina, C. R. Acad. Bulgare Sci., 36, 313–314 (1983).

    MATH  MathSciNet  Google Scholar 

  40. I. M. Shchepochkina, Funct. Anal. Appl., 33, 208–219 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  41. I. Shchepochkina, Represent. Theory, 3, 373–415 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  42. P. Woit, “Quantum field theory and representation theory: A sketch,” arXiv:hep-th/0206135v1 (2002).

  43. D. Leites, E. Poletaeva, and V. Serganova, J. Nonlinear Math. Phys., 9, 394–425 (2002); arXiv:math/0306209v1 [math.DG] (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. M. Atiyah and E. Witten, Adv. Theor. Math. Phys., 6, 1–106 (2002).

    MATH  MathSciNet  Google Scholar 

  45. R. L. Bryant, “Some remarks on G 2-structures,” arXiv:math/0305124v4 [math.DG] (2005).

  46. V. V. Fock and A. B. Goncharov, “Cluster X-varieties, amalgamation, and Poisson-Lie groups,” in: Algebraic Geometry and Number Theory (Progr. Math., Vol. 253), Birkhäuser, Boston, Mass. (2006), pp. 27–68; arXiv:math/0508408v2 [math.RT] (2005).

    Google Scholar 

  47. P. Grozman and D. Leites, “SuperLie and problems (to be) solved with it,” Preprint MPIM-Bonn 2003-39 (2003).

  48. E. Poletaeva, “Analogs of the Riemannian and Penrose tensors on supermanifolds,” arXiv:math/0510165v1 [math.RT] (2005).

  49. D. Leites, V. Serganova, and G. Vinel, “Classical superspaces and related structures,” in: Differential Geometric Methods in Theoretical Physics (Lect. Notes Phys., Vol. 375, U. Bruzzo et al., eds.), Springer, Berlin (1991), pp. 286–297.

    Google Scholar 

  50. I. Penkov and V. Serganova, Ann. Inst. Fourier (Grenoble), 39, 845–873 (1989).

    MATH  MathSciNet  Google Scholar 

  51. Y. Se-Ashi, Hokkaido Math. J., 17, 151–195 (1988).

    MATH  MathSciNet  Google Scholar 

  52. T. Morimoto, Hokkaido Math. J., 22, 263–347 (1993); “Lie algebras, geometric structures, and differential equations on filtered manifolds,” in: Lie Groups, Geometric Structures, and Differential Equations: One Hundred Years After Sophus Lie (Adv. Stud. Pure Math., Vol. 37, T. Morimoto, H. Sato, and K. Yamaguchi, eds.), Math. Soc. Japan, Tokyo (2002), p. 205–252.

    MATH  MathSciNet  Google Scholar 

  53. B. Feigin and D. Fuchs, “Cohomologies of Lie groups and Lie algebras,” in: Lie Groups and Lie Algebras: II (Encycl. Math. Sci., Vol. 21), Springer, Berlin (2000), p. 125–223.

    Google Scholar 

  54. Sh. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. 1, 2, Wiley, New York (1963, 1969).

    MATH  Google Scholar 

  55. V. Gershkovich and A. Vershik, J. Geom. Phys., 5, 407–452 (1988); A. M. Vershik and V. Ya. Gershkovich, J. Soviet Math., 59, 1040–1053 (1992).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. R. Montgomery, “Engel deformations and contact structures,” in: Northern California Symplectic Geometry Seminar (Amer. Math. Soc. Transl. Ser. 2, Vol. 196), Amer. Math. Soc., Providence, R. I. (1999), pp. 103–117.

    Google Scholar 

  57. V. Ovsienko and S. Tabachnikov, Projective Differential Geometry Old and New: From Schwarzian Derivative to Cohomology of Diffeomorphism Groups (Cambridge Tracts Math., Vol. 165), Cambridge Univ. Press, Cambridge (2005).

    Google Scholar 

  58. I. Biswas and A. Raina, Internat. Math. Res. Notices, No. 15, 753–768 (1996); No. 13, 685–716 (1999); Differential Geom. Appl., 15, 203–219 (2001).

  59. P. Grozman, D. Leites, and I. Shchepochkina, “Analogues of the Riemann tensor for exceptional structures on supermanifolds [in Russian],” in: Fundamental Mathematics Today: In Honor of the 10th Anniversary of the Independent University of Moscow (S. K. Lando and O. K. Sheinman, eds.), MCCME, Moscow (2003), p. 89–109; arXiv:math/0509525v1 [math.RT] (2005).

    Google Scholar 

  60. M. Zhitomirskii, Typical Singularities of Differential 1-forms and Pfaffian Equations (Transl. Math. Monogr., Vol. 113), Amer. Math. Soc., Providence, R. I. (1992).

    Google Scholar 

  61. A. Lebedev, D. Leites, and I. Shereshevskii, “Lie superalgebra structures in \(C^ \bullet (\mathfrak{n};\mathfrak{n})\) and \(H^ \bullet (\mathfrak{n},\mathfrak{n})\),” in: Lie Groups and Invariant Theory (Amer. Math. Soc. Transl. Ser. 2, Vol. 213, É. Vinberg, ed.), Amer. Math. Soc., Providence, R. I. (2005), p. 157–172; arXiv:math/0404139v1 [math.KT] (2004).

    Google Scholar 

  62. I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, “Differential operators on the base affine space and a study of \(\mathfrak{g}\)-modules,” in: Lie Groups and Their Representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), Halsted, New York (1975), p. 21–64.

    Google Scholar 

  63. N. Bourbaki, Lie Groups and Lie Algebras (Chap. 4–6), Springer, Berlin (2002).

    MATH  Google Scholar 

  64. È. B. Vinberg and A. L. Onishchik, Seminar on Lie Groups and Algebraic Groups [in Russian], Nauka, Moscow (1988); English transl.: A. L. Onishchik and E. B. Vinberg Lie Groups and Algebraic Groups, Springer, Berlin (1990).

    MATH  Google Scholar 

  65. P. Grozman and D. Leites, Czechoslovak J. Phys., 51, 1–21 (2001); arXiv:hep-th/9702073v1 (1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  66. I. B. Penkov, J. Soviet Math., 51, 2108–2140 (1990).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ya. Grozman.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 153, No. 2, pp. 186–219, November, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grozman, P.Y., Leites, D.A. Nonholonomic Riemann and Weyl tensors for flag manifolds. Theor Math Phys 153, 1511–1538 (2007). https://doi.org/10.1007/s11232-007-0131-z

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-007-0131-z

Keywords

Navigation