Skip to main content
Log in

Interphase Hamiltonian and first-order phase transitions: A generalization of the Lee-Yang theorem

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We generalize the Pirogov-Sinai theory and prove the results applicable to first-order phase transitions in the case of both bulk and surface phase lattice models. The region of first-order phase transitions is extended with respect to the chemical activities to the entire complex space ℂФ, where Φ is the set of phases in the model. We prove a generalization of the Lee-Yang theorem: as functions of the activities, the partition functions with a stable boundary condition have no zeros in ℂФ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Pirogov and Ya. G. Sinai, Theor. Math. Phys., 25, 1185–1192 (1975); 26, 39–49 (1976).

    Article  MathSciNet  Google Scholar 

  2. J. Z. Imbrie, Comm. Math. Phys., 82, 261–304, 305–343 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Zahradnik, Comm. Math. Phys., 93, 559–581 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  4. R. Kotecký and D. Preiss, Rend. Circ. Mat. Palermo (2), No. 3 (suppl.), 161–164 (1984).

    Google Scholar 

  5. A. G. Basuev, Theor. Math. Phys., 58, 171–182 (1984).

    Article  Google Scholar 

  6. J. Bricmont, K. Kuroda, and J. L. Lebowitz, Comm. Math. Phys., 101, 501–538 (1985).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. J. Fröhlich, A. Bovier, and U. Glaus, “Mathematical aspects of the physics of disordered systems,” in: Critical Phenomena, Random Systems, and Gauge Theories (Les Houches, France, 1984, K. Osterwalder and R. Stora, eds.), North-Holland, Amsterdam (1986), pp. 725–893.

    Google Scholar 

  8. J. Slawny, “Low-temperature properties of classical lattice systems: Phase transitions and phase diagrams,” in: Phase Transitions and Critical Phenomena (C. Domb and J. L. Lebowitz, eds.), Vol. 11, Acad. Press, London (1987), pp. 127–205.

    Google Scholar 

  9. A. G. Basuev, Theor. Math. Phys., 64, 716–734 (1985); 72, 861–871 (1987).

    Article  MathSciNet  Google Scholar 

  10. R. L. Dobrushin and M. Zagradnik, “Phase diagramm for continuous spin models: An extension Pirogov-Sinai theory,” in: Mathematical Problems of Statistical Mechanics and Dynamics: A Collection of Surveys (R. L. Dobrushin, ed.), Reidel, Dordrecht (1986), pp. 1–123.

    Google Scholar 

  11. F. Koukiou, D. Petritis, and M. Zahradnik, Comm. Math. Phys., 118, 365–383 (1988).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Yong Moon Park, Comm. Math. Phys., 114, 219–241 (1988).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. J. Bricmont and J. Slawny, J. Statist. Phys., 54, 89–161 (1989).

    Article  MathSciNet  Google Scholar 

  14. J. Fröhlich, L. Rey-Bellet, and D. Ueltschi, Comm. Math. Phys., 224, 33–63 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. M. Zahradnik, J. Statist. Phys., 47, 725–755 (1987).

    Article  MathSciNet  Google Scholar 

  16. A. C. D. van Enter, R. Fernández, and A. D. Sokal, J. Statist. Phys., 72, 879–1167 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  17. R. H. Schonmann and N. Yoshida, Comm. Math. Phys., 189, 299–309 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. M. Biskup et al., Comm. Math. Phys., 251, 79–131 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. S. N. Isakov, Comm. Math. Phys., 95, 427–443 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  20. S. N. Isakov, Theor. Math. Phys., 71, 638–648 (1987).

    Article  MathSciNet  Google Scholar 

  21. S. Friedli and C. E. Pfister, Comm. Math. Phys., 245, 69–103 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. M. E. Fisher, Arch. Rational Mech. Anal., 17, 377–410 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  23. D. Ruelle, Statistical Mechanics: Rigorous Results, World Scientific, Singapore (1999).

    Google Scholar 

  24. R. B. Griffiths, “Rigorous results and theorems,” in: Phase Transition and Critical Phenomena (C. Domb and M. S. Green, eds.), Vol. 1, Exact Results, Acad. Press, London (1972), pp. 7–109.

    Google Scholar 

  25. C. N. Yang and T. D. Lee, Phys. Rev. (2), 87, 404–409, 410–419 (1952).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. A. G. Basuev, Theor. Math. Phys., 58, 80–91 (1984).

    Article  Google Scholar 

  27. A. G. Basuev, Theor. Math. Phys., 39, 343–351 (1979).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Basuev.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 153, No. 1, pp. 98–123, October, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basuev, A.G. Interphase Hamiltonian and first-order phase transitions: A generalization of the Lee-Yang theorem. Theor Math Phys 153, 1434–1457 (2007). https://doi.org/10.1007/s11232-007-0126-9

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-007-0126-9

Keywords

Navigation