AdS/CFT duality at strong coupling

Abstract

We study the strong-coupling limit of the AdS/CFT correspondence in the framework of a recently proposed fermionic formulation of the Bethe ansatz equations governing the gauge theory anomalous dimensions. We give examples of states that do not follow the Gubser-Klebanov-Polyakov law at a large ’t Hooft coupling λ, in contrast to recent results on the quantum string Bethe equations that are valid in that regime. This result indicates that the fermionic construction cannot be trusted at large λ, although it remains an efficient tool for computing the weak-coupling expansion of anomalous dimensions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    E. Witten, Adv. Theor. Math. Phys., 2, 253 (1998); arXiv:hep-th/9802150v2 (1998).

    MATH  Google Scholar 

  2. 2.

    V. A. Kazakov, A. Marshakov, J. A. Minahan, and K. Zarembo, JHEP, 0405, 024 (2004); arXiv: hepth/0402207v6 (2004).

    Article  ADS  Google Scholar 

  3. 3.

    I. R. Klebanov, “TASI lectures: Introduction to the AdS/CFT correspondence,” in: Strings, Branes, and Gravity (TASI’99, Boulder, CO, USA, June, 1999, J. A. Harvey, S. Kachru, and E. Silverstein, eds.), World Scientific, River Edge, N. J. (2001), p. 615; arXiv:hep-th/0009139v2 (2000).

    Google Scholar 

  4. 4.

    J. M. Maldacena, Adv. Theor. Math. Phys., 2, 231 (1998); Internat. J. Theoret. Phys., 38, 1113 (1999); arXiv:hep-th/9711200v3 (1997).

    MATH  Google Scholar 

  5. 5.

    S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B, 428, 105 (1998); arXiv: hep-th/9802109v2 (1998).

    Article  ADS  Google Scholar 

  6. 6.

    K. Zarembo, C. R. Acad. Sci. Paris, Phys., 5, 1081 (2004); Fortschr. Phys., 53, 647 (2005); arXiv:hepth/0411191v2 (2004).

    Google Scholar 

  7. 7.

    N. Beisert, C. R. Acad. Sci. Paris, Phys., 5, 1039 (2004); arXiv:hep-th/0409147v2 (2004).

    Google Scholar 

  8. 8.

    N. Beisert, Phys. Rep., 405, 1 (2005); arXiv:hep-th/0407277v4 (2004).

    Article  ADS  Google Scholar 

  9. 9.

    N. Beisert, V. Dippel, and M. Staudacher, JHEP, 0407, 075 (2004); arXiv:hep-th/0405001v3 (2004).

    Article  ADS  Google Scholar 

  10. 10.

    K. Zarembo, Phys. Lett. B, 634, 552 (2006); arXiv:hep-th/0512079v1 (2005).

    Article  ADS  Google Scholar 

  11. 11.

    N. Beisert, J. A. Minahan, M. Staudacher, and K. Zarembo, JHEP, 0309, 010 (2003); arXiv: hep-th/0306139v2 (2003).

    Article  ADS  Google Scholar 

  12. 12.

    A. Rej, D. Serban, and M. Staudacher, JHEP, 0603, 018 (2006); arXiv:hep-th/0512077v2 (2005).

    Article  ADS  Google Scholar 

  13. 13.

    S. Frolov and A. A. Tseytlin, Phys. Lett. B, 570, 96 (2003); arXiv:hep-th/0306143v2 (2003).

    MATH  Article  ADS  Google Scholar 

  14. 14.

    R. Roiban, A. Tirziu, and A. A. Tseytlin, Phys. Rev. D, 73, 066003 (2006); arXiv: hep-th/0601074v2 (2006).

  15. 15.

    M. Beccaria and L. Del Debbio, JHEP, 0609, 025 (2006); arXiv:hep-th/0607236v1 (2006).

    Article  ADS  Google Scholar 

  16. 16.

    G. Arutyunov, S. Frolov, and M. Staudacher, JHEP, 0410, 016 (2004); arXiv:hep-th/0406256v3 (2004).

    Article  ADS  Google Scholar 

  17. 17.

    M. Beccaria and C. Ortix, JHEP, 0609, 016 (2006); arXiv:hep-th/0606138v1 (2006).

    Article  ADS  Google Scholar 

  18. 18.

    J. A. Minahan, J. Phys. A, 39, 13083 (2006); arXiv:hep-th/0603175v4 (2006).

  19. 19.

    E. A. Yuzbashyan, B. L. Altshuler, and B. S. Shastry, J. Phys. A, 35, 7525 (2002); arXiv: cond-mat/0201551v1 [cond-mat.str-el] (2002).

    MATH  Article  ADS  Google Scholar 

  20. 20.

    E. H. Lieb and F. Y. Wu, Phys. Rev. Lett., 20, 1445 (1968); Erratum, 21, 192 (1968).

    Article  ADS  Google Scholar 

  21. 21.

    L. Hulthén, Ark. Mat. Astron. Fysik. A, 26, 1 (1938).

    Google Scholar 

  22. 22.

    G. Feverati, D. Fioravanti, P. Grinza, and M. Rossi, JHEP, 0605, 068 (2006); arXiv: hep-th/0602189v2 (2006).

    Article  ADS  Google Scholar 

  23. 23.

    W. Metzner and D. Vollhardt, Phys. Rev. B, 39, 4462 (1989).

    Article  ADS  Google Scholar 

  24. 24.

    A. Dhar and B. Shastry, Phys. Rev. Lett., 85, 2813 (2000).

    Article  ADS  Google Scholar 

  25. 25.

    B. Sutherland, Phys. Rev. Lett., 74, 816 (1995).

    Article  ADS  Google Scholar 

  26. 26.

    S. Frolov and A. A. Tseytlin, Nucl. Phys. B, 668, 77 (2003); arXiv:hep-th/0304255v3 (2003).

    MATH  Article  ADS  Google Scholar 

  27. 27.

    J. Plefka, “Spinning strings and integrable spin chains in the AdS/CFT correspondence,” arXiv: hepth/0507136v2 (2005).

  28. 28.

    D. Serban and M. Staudacher, JHEP, 0406, 001 (2004); arXiv:hep-th/0401057v3 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Ortix.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 152, No. 2, pp. 213–224, August, 2007.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beccaria, M., Ortix, C. AdS/CFT duality at strong coupling. Theor Math Phys 152, 1060–1068 (2007). https://doi.org/10.1007/s11232-007-0090-4

Download citation

Keywords

  • integrable lattice model
  • AdS/CFT correspondence
  • Bethe ansatz