Skip to main content
Log in

Algebraic properties of Gardner’s deformations for integrable systems

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We formulate an algebraic definition of Gardner’s deformations for completely integrable bi-Hamiltonian evolutionary systems. The proposed approach extends the class of deformable equations and yields new integrable evolutionary and hyperbolic Liouville-type systems. We find an exactly solvable two-component extension of the Liouville equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Miura, C. S. Gardner, and M. D. Kruskal, J. Math. Phys., 9, 1204–1209 (1968).

    Article  MATH  Google Scholar 

  2. P. Mathieu, “Open problems for the super KdV equations,” in: Bäcklund and Darboux Transformations: The Geometry of Solitons (CRM Proc. Lect. Notes, Vol. 29), Amer. Math. Soc., Providence, R. I. (2001), p. 325–334.

    Google Scholar 

  3. P. Labelle and P. Mathieu, J. Math. Phys., 32, 923–927 (1991).

    Article  MATH  ADS  Google Scholar 

  4. A. Karasu and A. V. Kiselev, J. Phys. A, 39, 11453–11460 (2006).

    Article  MATH  ADS  Google Scholar 

  5. B. A. Kupershmidt, Proc. Roy. Irish Acad. Sect. A, 83, No. 1, 45–74 (1983).

    MATH  Google Scholar 

  6. P. Kersten, I. Krasil’shchik, and A. Verbovetsky, “Nonlocal constructions in the geometry of PDE,” in: Symmetry in Nonlinear Mathematical Physics (Proc. Inst. Math. NAS Ukraine, Vol. 50), Inst. Math. NAS Ukraine, Kiev (2004), p. 412–423.

    Google Scholar 

  7. I. Krasil’shchik and A. Verbovetsky, Homological Methods in Equations of Mathematical Physics, Open Education and Sciences, Opava, Czech Republic (1998).

    Google Scholar 

  8. A. V. Kiselev, Theor. Math. Phys., 144, 952–960 (2005).

    Article  Google Scholar 

  9. V. G. Drinfel’d and V. V. Sokolov, “Lie algebra and equations of Korteweg-de Vries type [in Russian],” in: Itogi Nauki i Tekhniki Ser. Sovrem. Probl. Mat. (R. V. Gamkrelidze, ed.), Vol. 24, VINITI, Moscow (1984), p. 81–180.

    Google Scholar 

  10. A. B. Borisov and S. A. Zykov, Theor. Math. Phys., 115, 530–541 (1998).

    Article  MATH  Google Scholar 

  11. G. Carlet, B. Dubrovin, and Y. Zhang, Mosc. Math. J., 4, 313–332 (2004); B. Dubrovin and Y. Zhang, Comm. Math. Phys., 198, 311–361 (1998).

    MATH  Google Scholar 

  12. E. Getzler, Duke Math. J., 111, 535–560 (2002).

    Article  MATH  Google Scholar 

  13. P. Kersten, I. Krasil’shchik, and A. Verbovetsky, J. Geom. Phys., 50, 273–302 (2004).

    Article  MATH  Google Scholar 

  14. P. Mathieu, J. Math. Phys., 29, 2499–2506 (1988).

    Article  MATH  ADS  Google Scholar 

  15. A. V. Kiselev and T. Wolf, SIGMA, 2, 030 (2006).

    Google Scholar 

  16. M. Gerstenhaber and S. D. Schack, “Algebraic cohomology and deformation theory,” in: Deformation Theory of Algebras and Structures and Applications (NATO Adv. Sci. Inst. Ser. C. Math. Phys. Sci., Vol. 247, M. Gerstenhaber and M. Hazelwinkel, eds.), Kluwer, Dordrecht (1988), p. 11–264.

    Google Scholar 

  17. A. V. Kiselev, Vestnik Moskov. Univ. Ser. III Fiz. Astronom., No. 6, 22–26 (2002).

  18. M. V. Pavlov, J. Nonlinear Math. Phys., 9Suppl. 1, 173–191 (2002).

    Article  Google Scholar 

  19. D. K. Demskoi, J. Nonlinear Math. Phys., 14, 147–156 (2007).

    Article  Google Scholar 

  20. A. V. Zhiber and V. V. Sokolov, Russ. Math. Surveys, 56, No. 1, 61–101 (2001).

    Article  MATH  Google Scholar 

  21. S. Igonin, J. Geom. Phys., 56, 939–998 (2006).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 152, No. 1, pp. 101–117, July, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiselev, A.V. Algebraic properties of Gardner’s deformations for integrable systems. Theor Math Phys 152, 963–976 (2007). https://doi.org/10.1007/s11232-007-0081-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-007-0081-5

Keywords

Navigation