Skip to main content
Log in

Burgers and Kadomtsev-Petviashvili hierarchies: A functional representation approach

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2007

Abstract

Functional representations of (matrix) Burgers and potential Kadomtsev-Petviashvili (pKP) hierarchies (and others), as well as some corresponding Bäcklund transformations, can be obtained surprisingly simply from a “discrete” functional zero-curvature equation. We use these representations to show that any solution of a Burgers hierarchy is also a solution of the pKP hierarchy. Moreover, the pKP hierarchy can be expressed in the form of an inhomogeneous Burgers hierarchy. In particular, this leads to an extension of the Cole-Hopf transformation to the pKP hierarchy. Furthermore, these hierarchies are solved by the solutions of certain functional Riccati equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Mikhailov, A. B. Shabat, and V. V. Sokolov, “The symmetry approach to classification of integrable equations,” in: What Is Integrability? (V. E. Zakharov, ed.), Springer, Berlin (1991), p. 115–184.

    Google Scholar 

  2. D. V. Choodnovsky and G. V. Choodnovsky, Nuovo Cimento B, 40, 339–352 (1977).

    ADS  MathSciNet  Google Scholar 

  3. D. Levi, O. Ragnisco, and M. Bruschi, Nuovo Cimento B, 74, 33–51 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Bruschi and O. Ragnisco, J. Math. Phys., 26, 943–945 (1985).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. A. Pickering, J. Math. Phys., 35, 821–833 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. A. S. Fokas and Q. M. Liu, Phys. Rev. Lett., 72, 3293–3296 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. H. Tasso, J. Phys. A, 29, 7779–7784 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. B. A. Kupershmidt, KP or mKP: Noncommutative Mathematics of Lagrangian, Hamiltonian, and Integrable Systems (Math. Surveys Monogr., Vol. 78), Amer. Math. Soc., Providence, R. I. (2000).

    MATH  Google Scholar 

  9. B. A. Kupershmidt, J. Nonlinear Math. Phys., 12, 539–549 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. A. Dimakis and F. Müller-Hoissen, “Nonassociativity and integrable hierarchies,” arXiv:nlin/0601001v2 [nlin.SI] (2006).

  11. F. Guil, M. Mañas, and G. Álvarez, Phys. Lett. A, 190, 49–52 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. A. Dimakis and F. Müller-Hoissen, J. Phys. A, 39, 9169–9186 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. A. Dimakis and F. Müller-Hoissen, J. Phys. A, 39, 14015–14033 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. M. Gekhtman and A. Kasman, J. Geom. Phys., 56, 282–309 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. M. Sato and Y. Sato, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifold,” in: Nonlinear Partial Differential Equations in Applied Science (Math. Stud., Vol. 81, H. Fujita, P. D. Lax, and G. Strang, eds.), North-Holland, Amsterdam (1983), p. 259–271.

    Google Scholar 

  16. E. Date, M. Jimbo, and T. Miwa, J. Phys. Soc. Japan, 51, 4116–4124 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  17. V. E. Adler, A. I. Bobenko, and Yu. B. Suris, Comm. Math. Phys., 233, 513–543 (2003).

    MATH  ADS  MathSciNet  Google Scholar 

  18. A. I. Bobenko and Yu. B. Suris, Lett. Math. Phys., 61, 241–254 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Dimakis, F. Müller-Hoissen, and T. Striker, J. Phys. A, 26, 1927–1949 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. A. Dimakis, F. Müller-Hoissen, and T. Striker, Phys. Lett. B, 300, 141–144 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  21. L.-L. Chau, J. C. Shaw, and H. C. Yen, Comm. Math. Phys., 149, 263–278 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. E. Hopf, Comm. Pure Appl. Math., 3, 201–230 (1950).

    Article  MATH  MathSciNet  Google Scholar 

  23. J. D. Cole, Quart. Appl. Math., 9, 225–236 (1951).

    MATH  MathSciNet  Google Scholar 

  24. J. Weiss, M. Tabor, and G. Carnevale, J. Math. Phys., 24, 522–526 (1983).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. K. T. Joseph and A. S. Vasudeva Murthy, NoDEA Nonlinear Differential Equations Appl., 8, 173–193 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  26. D. J. Arrigo and F. Hickling, J. Phys. A, 35, L389–L399 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. M. Hamanaka and K. Toda, J. Phys. A, 36, 11981–11998 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. L. Martina and O. K. Pashaev, “Burgers’ equation in noncommutative space-time,” arXiv: hep-th/0302055v1 (2003).

  29. A. S. Fokas, “Invariants, Lie-Bäcklund operators, and Bäcklund transformations,” Doctoral dissertation, California Inst. Technology, Pasadena, Calif. (1979).

  30. V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin (1991).

    MATH  Google Scholar 

  31. L. V. Bogdanov and B. G. Konopelchenko, J. Math. Phys., 39, 4701–4728 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. L. V. Bogdanov, Analytic-Bilinear Approach to Integrable Hierarchies (Math. Appl., Vol. 493), Kluwer, Dordrecht (1999).

    MATH  Google Scholar 

  33. J. Dorfmeister, E. Neher, and J. Szmigielski, Quart. J. Math., 40, 161–195 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  34. V. B. Matveev, Lett. Math. Phys., 3, 213–216 (1979).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. W. Oevel, Phys. A, 195, 533–576 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  36. Q. P. Liu and M. Mañas, J. Nonlinear Sci., 9, 213–232 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  37. W. T. Reid, Riccati Differential Equations (Math. Sci. Eng., Vol. 86), Acad. Press, New York (1972).

    MATH  Google Scholar 

  38. H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank, Matrix Riccati Equations in Control and Systems Theory, Birkhäuser, Basel (2003).

    MATH  Google Scholar 

  39. S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its, and V. B. Matveev, Phys. Lett. A, 63, 205–206 (1977).

    Article  ADS  Google Scholar 

  40. G. Biondini and S. Chakravarty, J. Math. Phys., 47, 033514 (2006).

    Google Scholar 

  41. A. Dimakis and F. Müller-Hoissen, Czech. J. Phys., 56, 1123–1130 (2006); arXiv:nlin/ 0608017v1 [nlin.PS] (2006).

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 152, No. 1, pp. 66–82, July, 2007.

An erratum to this article is available at http://dx.doi.org/10.1007/s11232-007-0106-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimakis, A., Müller-Hoissen, F. Burgers and Kadomtsev-Petviashvili hierarchies: A functional representation approach. Theor Math Phys 152, 933–947 (2007). https://doi.org/10.1007/s11232-007-0079-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-007-0079-z

Keywords

Navigation