Abstract
We analyze the dynamical behavior of the N-soliton train of the Manakov system and of the vector NLS equation in the adiabatic approximation. We prove that the dynamics of the N-soliton train in both cases are described by a generalized version of the complex Toda chain model. This fact can be used to predict the asymptotic regimes of the N-soliton train provided the initial soliton parameters are given.
This is a preview of subscription content, access via your institution.
References
Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Acad. Press, San Diego, Calif. (2003).
C. Desem and P. L. Chu, “Soliton-soliton interactions,” in: Optical Solitons: Theory and Experiment (J. R. Taylor, ed.), Cambridge Univ. Press, Cambridge (1992), p. 127; I. M. Uzunov, V. D. Stoev, and T. I. Tzoleva, Opt. Lett., 17, 1417 (1992).
M. Suzuki, H. Toga, N. Edagawa, H. Tanaka, S. Yamamote, and S. Akiba, Electron. Lett., 30, 1083 (1994).
V. I. Karpman and V. V. Solov’ev, Phys. D, 3, 487 (1981).
I. M. Uzunov, V. S. Gerdjikov, M. Gölles, and F. Lederer, Opt. Commun., 125, 237 (1996).
V. S. Gerdjikov, D. J. Kaup, I. M. Uzunov, and E. G. Evstatiev, Phys. Rev. Lett., 77, 3943 (1996); V. S. Gerdjikov, I. M. Uzunov, E. G. Evstatiev, and G. L. Diankov, Phys. Rev. E, 55, 6039 (1997); V. S. Gerdjikov and I. M. Uzunov, Phys. D, 152–153, 355 (2001).
V. S. Gerdjikov, E. V. Doktorov, and J. Yang, Phys. Rev. E, 64, 056617 (2001).
V. S. Shchesnovich, Phys. Rev. E, 65, 046614 (2002).
E. V. Doktorov, N. P. Matsuka, and V. M. Rothos, Phys. Rev. E, 69, 056607 (2004).
J. M. Arnold, J. Opt. Soc. Amer. A, 15, 1450 (1998); Phys. Rev. E, 60, 979 (1999).
S. V. Manakov, Sov. Phys. JETP, 38, 693 (1974).
V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: The Inverse Scattering Method, Nauka, Moscow (1980); English transl.: S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Plenum, New York (1984).
M. J. Ablowitz, B. Prinari, and A. D. Trubatch, Discrete and Continuous Nonlinear Schrodinger Systems (London Math. Soc. Lect. Notes Ser., Vol. 302), Cambridge Univ. Press, Cambridge (2004).
J. Yang, Phys. Rev. E, 65, 036606 (2002).
M. Midrio, S. Wabnitz, and P. Franco, Phys. Rev. E, 54, 5743 (1996); V. S. Shchesnovich and E. V. Doktorov, Phys. Rev. E, 55, 7626 (1997); T. I. Lakoba and D. J. Kaup, Phys. Rev. E, 56, 6147 (1997); S. M. Baker, J. N. Elgin, and J. Gibbons, Phys. Rev. E, 62, 4325 (1999).
M. Toda, Theory of Nonlinear Lattices, Springer, Berlin (1989); J. Moser, “Finitely many mass points on the line under the influence of an exponential potential: An integrable system,” in: Dynamical Systems, Theory, and Applications (Lect. Notes Phys., Vol. 38, J. Moser, ed.), Springer, Berlin (1975), p. 467; Adv. Math., 16, 197 (1975).
V. S. Gerdjikov, E. G. Evstatiev, and R. I. Ivanov, J. Phys. A, 31, 8221 (1998); 33, 975 (2000); arXiv:solvint/9909020v1 (1999).
D. J. Kaup, V. S. Gerdjikov, E. G. Evstatiev, G. L. Diankov, and I. M. Uzunov, “Criterion and regions of stability for quasi-equidistant soliton trains,” Preprint INRNE-TH-97-4, Inst. Nucl. Res. Nucl. Energy, Sofia (1997); arXiv:solv-int/9708004v1 (1997); V. S. Gerdjikov, E. G. Evstatiev, D. J. Kaup, G. L. Diankov, and I. M. Uzunov, Phys. Lett. A, 241, 323 (1998).
D. Anderson, Phys. Rev. A, 27, 3135 (1983); D. Anderson, M. Lisak, and T. Reichel, Phys. Rev. A, 38, 1618 (1988); B. A. Malomed, Progr. Opt., 43, 69 (2002).
V. S. Gerdjikov, “N-soliton interactions, the complex Toda chain, and stability of NLS soliton trains,” in: Proc. 16th Intl. Symp. on Electromagnetic Theory (Aristotle Univ. of Thessaloniki, Greece, 1998, E. Kriezis, ed.), Vol. 1 (1998), p. 307.
Author information
Authors and Affiliations
Additional information
__________
Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 151, No. 3, pp. 391–404, June, 2007.
Rights and permissions
About this article
Cite this article
Gerdjikov, V.S., Doktorov, E.V. & Matsuka, N.P. N-soliton train and generalized complex Toda chain for the Manakov system. Theor Math Phys 151, 762–773 (2007). https://doi.org/10.1007/s11232-007-0062-8
Issue Date:
DOI: https://doi.org/10.1007/s11232-007-0062-8
Keywords
- complex Toda chain
- Manakov model
- adiabatic dynamics
- vector soliton train