Theoretical and Mathematical Physics

, Volume 151, Issue 3, pp 762–773 | Cite as

N-soliton train and generalized complex Toda chain for the Manakov system

  • V. S. Gerdjikov
  • E. V. Doktorov
  • N. P. Matsuka

Abstract

We analyze the dynamical behavior of the N-soliton train of the Manakov system and of the vector NLS equation in the adiabatic approximation. We prove that the dynamics of the N-soliton train in both cases are described by a generalized version of the complex Toda chain model. This fact can be used to predict the asymptotic regimes of the N-soliton train provided the initial soliton parameters are given.

Keywords

complex Toda chain Manakov model adiabatic dynamics vector soliton train 

References

  1. 1.
    Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Acad. Press, San Diego, Calif. (2003).Google Scholar
  2. 2.
    C. Desem and P. L. Chu, “Soliton-soliton interactions,” in: Optical Solitons: Theory and Experiment (J. R. Taylor, ed.), Cambridge Univ. Press, Cambridge (1992), p. 127; I. M. Uzunov, V. D. Stoev, and T. I. Tzoleva, Opt. Lett., 17, 1417 (1992).Google Scholar
  3. 3.
    M. Suzuki, H. Toga, N. Edagawa, H. Tanaka, S. Yamamote, and S. Akiba, Electron. Lett., 30, 1083 (1994).CrossRefGoogle Scholar
  4. 4.
    V. I. Karpman and V. V. Solov’ev, Phys. D, 3, 487 (1981).CrossRefMathSciNetGoogle Scholar
  5. 5.
    I. M. Uzunov, V. S. Gerdjikov, M. Gölles, and F. Lederer, Opt. Commun., 125, 237 (1996).CrossRefGoogle Scholar
  6. 6.
    V. S. Gerdjikov, D. J. Kaup, I. M. Uzunov, and E. G. Evstatiev, Phys. Rev. Lett., 77, 3943 (1996); V. S. Gerdjikov, I. M. Uzunov, E. G. Evstatiev, and G. L. Diankov, Phys. Rev. E, 55, 6039 (1997); V. S. Gerdjikov and I. M. Uzunov, Phys. D, 152–153, 355 (2001).CrossRefADSGoogle Scholar
  7. 7.
    V. S. Gerdjikov, E. V. Doktorov, and J. Yang, Phys. Rev. E, 64, 056617 (2001).Google Scholar
  8. 8.
    V. S. Shchesnovich, Phys. Rev. E, 65, 046614 (2002).Google Scholar
  9. 9.
    E. V. Doktorov, N. P. Matsuka, and V. M. Rothos, Phys. Rev. E, 69, 056607 (2004).Google Scholar
  10. 10.
    J. M. Arnold, J. Opt. Soc. Amer. A, 15, 1450 (1998); Phys. Rev. E, 60, 979 (1999).ADSMathSciNetGoogle Scholar
  11. 11.
    S. V. Manakov, Sov. Phys. JETP, 38, 693 (1974).ADSMathSciNetGoogle Scholar
  12. 12.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: The Inverse Scattering Method, Nauka, Moscow (1980); English transl.: S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Plenum, New York (1984).MATHGoogle Scholar
  13. 13.
    M. J. Ablowitz, B. Prinari, and A. D. Trubatch, Discrete and Continuous Nonlinear Schrodinger Systems (London Math. Soc. Lect. Notes Ser., Vol. 302), Cambridge Univ. Press, Cambridge (2004).Google Scholar
  14. 14.
    J. Yang, Phys. Rev. E, 65, 036606 (2002).Google Scholar
  15. 15.
    M. Midrio, S. Wabnitz, and P. Franco, Phys. Rev. E, 54, 5743 (1996); V. S. Shchesnovich and E. V. Doktorov, Phys. Rev. E, 55, 7626 (1997); T. I. Lakoba and D. J. Kaup, Phys. Rev. E, 56, 6147 (1997); S. M. Baker, J. N. Elgin, and J. Gibbons, Phys. Rev. E, 62, 4325 (1999).CrossRefADSGoogle Scholar
  16. 16.
    M. Toda, Theory of Nonlinear Lattices, Springer, Berlin (1989); J. Moser, “Finitely many mass points on the line under the influence of an exponential potential: An integrable system,” in: Dynamical Systems, Theory, and Applications (Lect. Notes Phys., Vol. 38, J. Moser, ed.), Springer, Berlin (1975), p. 467; Adv. Math., 16, 197 (1975).MATHGoogle Scholar
  17. 17.
    V. S. Gerdjikov, E. G. Evstatiev, and R. I. Ivanov, J. Phys. A, 31, 8221 (1998); 33, 975 (2000); arXiv:solvint/9909020v1 (1999).MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    D. J. Kaup, V. S. Gerdjikov, E. G. Evstatiev, G. L. Diankov, and I. M. Uzunov, “Criterion and regions of stability for quasi-equidistant soliton trains,” Preprint INRNE-TH-97-4, Inst. Nucl. Res. Nucl. Energy, Sofia (1997); arXiv:solv-int/9708004v1 (1997); V. S. Gerdjikov, E. G. Evstatiev, D. J. Kaup, G. L. Diankov, and I. M. Uzunov, Phys. Lett. A, 241, 323 (1998).Google Scholar
  19. 19.
    D. Anderson, Phys. Rev. A, 27, 3135 (1983); D. Anderson, M. Lisak, and T. Reichel, Phys. Rev. A, 38, 1618 (1988); B. A. Malomed, Progr. Opt., 43, 69 (2002).CrossRefADSGoogle Scholar
  20. 20.
    V. S. Gerdjikov, “N-soliton interactions, the complex Toda chain, and stability of NLS soliton trains,” in: Proc. 16th Intl. Symp. on Electromagnetic Theory (Aristotle Univ. of Thessaloniki, Greece, 1998, E. Kriezis, ed.), Vol. 1 (1998), p. 307.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • V. S. Gerdjikov
    • 1
  • E. V. Doktorov
    • 2
  • N. P. Matsuka
    • 3
  1. 1.Institute for Nuclear Research and Nuclear EnergySofiaBulgaria
  2. 2.Stepanov Institute of PhysicsMinskBelarus
  3. 3.Institute of MathematicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations