Abstract
Using analytic methods of finite-gap integration, we construct quasihomogeneous algebraic solutions of the WDVV associativity equations and the nonsemisimple Frobenius manifolds associated with them.
References
I. M. Krichever, Funct. Anal. Appl., 31, 25–39 (1997).
R. Dijkgraaf, E. Verlinde, and H. Verlinde, Nucl. Phys. B, 352, 59–86 (1991).
S. Barannikov and M. Kontsevich, Internat. Math. Res. Notices, No. 4, 201–215 (1998).
V. Shramchenko, Comm. Math. Phys., 256, 635–680 (2005).
B. Dubrovin, “Geometry of 2D topological field theories,” in: Integrable Systems and Quantum Groups (Lect. Notes Math., Vol. 1620, M. Francaviglia et al., ed.), Springer, Berlin (1995), p. 120–348.
E. Witten, Nucl. Phys. B, 340, 281–332 (1990).
B. Dubrovin, Nucl. Phys. B, 379, 627–689 (1992).
V. E. Zakharov, Duke Math. J., 94, 103–139 (1998).
A. E. Mironov and I. A. Taimanov, Tr. Mat. Inst. Steklova, 255, 180–196 (2006).
A. Marshakov, A. Mironov, and A. Morozov, Phys. Lett. B, 389, 43–52 (1996).
Author information
Authors and Affiliations
Additional information
__________
Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 151, No. 2, pp. 195–206, May, 2007.
Rights and permissions
About this article
Cite this article
Mironov, A.E., Taimanov, I.A. Some algebraic examples of Frobenius manifolds. Theor Math Phys 151, 604–613 (2007). https://doi.org/10.1007/s11232-007-0047-7
Received:
Issue Date:
DOI: https://doi.org/10.1007/s11232-007-0047-7