Skip to main content
Log in

Wave-packet continuum discretization method for solving the three-body scattering problem

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We generalize the wave-packet continuum discretization method previously developed for the scattering problem to the three-body system. For each asymptotic channel, we construct a basis of three-body wave packets given by square-integrable functions. We show that the projections of the channel resolvents on the subspace of three-body wave packets are determined by diagonal matrices, whose eigenvalues we find explicitly. We express the amplitudes of 2→2 processes explicitly in terms of “wave-packet” finite-dimensional projections of the full resolvent. To illustrate our formalism, we calculate the differential cross section of elastic deuteron scattering on a heavy nucleus above the three-body breakup threshold and the s-wave quartet (n-d)-scattering amplitude. The results of the calculations agree well with the results obtained by other methods. In terms of complexity, the proposed scheme for solving the three-body scattering problem is comparable to solving a similar problem for bound states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Faddeev, JETP, 12, 1014 (1961); S. P. Merkur’ev and L. D. Faddeev, Quantum Scattering Theory for Few-Body Systems [in Russian], Nauka, Moscow (1985); English transl.: L. D. Faddeev and S. P. Merkuriev, Quantum Scattering Theory for Several Particle Systems (Math. Phys. Appl. Math., Vol. 11), Kluwer, Dordrecht (1993).

    MathSciNet  Google Scholar 

  2. E. W. Schmid and H. Ziegelmann, The Quantum Mechanical Three-Body Problem, Pergamon, Braunschweig (1974).

    Google Scholar 

  3. C. Gignoux and A. Laverne, Phys. Rev. Lett., 29, 436 (1972); N. W. Schellingerhout, “Numerical methods in configuration-space A = 3, 4 bound-state and scattering calculations,” in: Few-Body Problems in Physics ’93: Proc. 14th European Conf. on Few-Body Problems in Physics, Amsterdam, the Netherlands, August 23–27, 1993 (Few-body Systems Supplement, Vol. 7, B. L. G. Bakker and R. van Dantzig, eds.), Springer, New York (1994), p. 361; V. M. Suslov and B. Vlahovic, Phys. Rev. C, 69, 044003 (2004); F. Ciesielski and J. Carbonell, Phys. Rev. C, 58, 58 (1998).

    Article  ADS  Google Scholar 

  4. W. Glöckle et al., Phys. Rep., 274, 107 (1996).

    Article  ADS  Google Scholar 

  5. R. Lazauskas and J. Carbonell, Phys. Rev. C, 70, 044002 (2004).

    Google Scholar 

  6. W. Shadow, C. Elster, and W. Glöckle, Few-Body Syst., 28, 15 (2000); nucl-th/99030020 (1999).

    Article  ADS  Google Scholar 

  7. H. A. Yamani and M. S. Abdelmonem, J. Phys. B, 30, 1633 (1997); S. A. Zaitsev, Yu. F. Smirnov, and A. M. Shirokov, Theor. Math. Phys., 117, 1291 (1998).

    Article  ADS  Google Scholar 

  8. J. J. Bevelacqua and R. J. Philpott, Nucl. Phys. A, 275, 301 (1977).

    Article  ADS  Google Scholar 

  9. N. Austern, C. M. Vincent, and J. P. Farrell, Ann. Phys. (New York), 96, 333 (1976); 114, 93 (1978).

    Article  ADS  Google Scholar 

  10. H. Amakawa et al., Phys. Rev. C, 23, 583 (1981).

    Article  ADS  Google Scholar 

  11. R. Y. Rasoanaivo and G. H. Rawitscher, Phys. Rev. C, 39, 1709 (1989); T. Matsumoto et al., Phys. Rev. C, 68, 064607 (2003).

    Article  ADS  Google Scholar 

  12. J. R. Winick and W. P. Reinhardt, Phys. Rev. A, 18, 910, 925 (1978).

    Article  ADS  Google Scholar 

  13. M. Cizek, J. Horacek, and H.-D. Meyer, Comput. Phys. Comm., 131, 41 (2000).

    Article  MATH  ADS  Google Scholar 

  14. V. D. Efros, W. Leidemann, and G. Orlandini, Phys. Rev. C, 58, 582 (1998).

    Article  ADS  Google Scholar 

  15. Z. Papp and W. Plessas, Phys. Rev. C, 54, 50 (1996); Z. Papp and S. L. Yakovlev, “The three-body Coulomb scattering problem in discrete Hilbert-space basis representation,” nucl-th/9903078 (1999); Z. Papp et al., Phys. Rev. A, 63, 062721 (2001).

    Article  ADS  Google Scholar 

  16. V. I. Kukulin and O. A. Rubtsova, Theor. Math. Phys., 130, 54 (2002); 134, 404 (2003); 139, 693 (2004).

    Article  MATH  Google Scholar 

  17. V. I. Kukulin and O. A. Rubtsova, Theor. Math. Phys., 145, 1711 (2005).

    Article  MathSciNet  Google Scholar 

  18. A. Baz, Ya. Zeldovich, and A. Perelomov, Scattering, Reactions, and Decays in Nonrelativistic Quantum Mechanics [in Russian], Nauka, Moscow (1971); English transl., Israel Program for Scientific Translations, Jerusalem (1969).

    Google Scholar 

  19. R. Kozack and F. S. Levin, Phys. Rev. C, 36, 883 (1987).

    Article  ADS  Google Scholar 

  20. O. A. Rubtsova and V. I. Kukulin, Phys. Atomic Nuclei, 64, 1689 (2001).

    Article  ADS  Google Scholar 

  21. W. Glockle, The Quantum Mechanical Few-Body Problem, Springer, Berlin (1983).

    Google Scholar 

  22. C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys. Rev. C, 39, 1261 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 150, No. 3, pp. 473–497, March, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kukulin, V.I., Pomerantsev, V.N. & Rubtsova, O.A. Wave-packet continuum discretization method for solving the three-body scattering problem. Theor Math Phys 150, 403–424 (2007). https://doi.org/10.1007/s11232-007-0030-3

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-007-0030-3

Keywords

Navigation