Skip to main content
Log in

Transition function for the Toda chain

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We use the method of Λ-operators developed by Derkachov, Korchemsky, and Manashov to derive eigenfunctions for the open Toda chain. Using the diagram technique developed for these Λ-operators, we reproduce the Sklyanin measure and study the properties of the Λ-operators. This approach to the open Toda chain eigenfunctions reproduces the Gauss-Givental representation for these eigenfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Derkachov, G. Korchemsky, and A. Manashov, JHEP, 07, 047 (2003).

    Article  MathSciNet  Google Scholar 

  2. E. K. Sklyanin, “The quantum Toda chain,” in: Nonlinear Equations in Classical and Quantum Field Theory (Lect. Notes Phys., Vol. 226, N. Sanchez and H. DeVega, eds.), Springer, Berlin (1985), pp. 196–233.

    Google Scholar 

  3. S. Kharchev and D. Lebedev, Lett. Math. Phys., 50, 53–77 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  4. V. Pasquier and M. Gaudin, J. Phys. A, 25, 5243–5252 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. M. Gutzwiller, Ann. Phys., 133, 304–331 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Gerasimov, S. Kharchev, D. Lebedev, and S. Oblezin, “On a Gauss-Givental representation of quantum Toda chain wave function,” math.RT/0505310 (2005).

  7. A. Givental, “Stationary phase integrals, quantum Toda lattices, flag manifolds, and the mirror conjecture,” in: Topics in Singularity Theory: V. I. Arnold’s 60th Anniversary Collection (Am. Math. Soc. Transl., Ser. 2, Vol. 180, A. Khovanskii, A. Varchenko, and V. Vassiliev, eds.), Amer. Math. Soc., Providence, R. I. (1997), pp. 103–115.

    Google Scholar 

  8. R. Baxter, Exactly Solved Models in Statistical Mechanics, Acad. Press, London (1982).

    MATH  Google Scholar 

  9. H. Bateman and A. Erdélyi, eds., Higher Transcendental Functions (Based on notes left by H. Bateman), Vol. 2, McGraw-Hill, New York (1953).

    Google Scholar 

  10. S. Kharchev and D. Lebedev, JETP Letters, 71, 235–238 (2000).

    Article  ADS  Google Scholar 

  11. S. Kharchev and D. Lebedev, J. Phys. A, 34, 2247–2258 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. I. M. Gelfand and N. Ya. Vilenkin, Generalized Functions [in Russian], Vol. 4, Some Applications of Harmonic Analysis: Rigged Hilbert Spaces, Fizmatgiz, Moscow (1961); English transl.: Generalized Functions, Vol. 4, Applications of Harmonic Analysis, Acad. Press, New York (1964).

    Google Scholar 

  13. V. S. Vladimirov, Generalized Functions in Mathematical Physics [in Russian], Nauka, Moscow (1976); English transl., Mir, Moscow (1979).

    Google Scholar 

  14. O. Babelon, Lett. Math. Phys., 65, 229–246 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Gerasimov, S. Kharchev, and D. Lebedev, Internat. Math. Res. Notices, 17, 823–854 (2004).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 150, No. 3, pp. 371–390, March, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silantyev, A.V. Transition function for the Toda chain. Theor Math Phys 150, 315–331 (2007). https://doi.org/10.1007/s11232-007-0024-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-007-0024-1

Keywords

Navigation