Skip to main content
Log in

Elliptic hypergeometric functions and Calogero-Sutherland-type models

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider an elliptic analogue of the Gauss hypergeometric function and two of its multivariate generalizations. We describe their relation to elliptic beta integrals, the exceptional Weyl group E7, the elliptic hypergeometric equation, and Calogero-Sutherland-type models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Andrews, R. Askey, and R. Roy, Special Functions (Encyclopedia Math. Appl., Vol. 71), Cambridge Univ. Press, Cambridge (1999).

    MATH  Google Scholar 

  2. G. Gasper and M. Rahman, Basic Hypergeometric Series (Encyclopedia Math. Appl., Vol. 96), Cambridge Univ. Press, Cambridge (2004).

    MATH  Google Scholar 

  3. V. P. Spiridonov, “Elliptic hypergeometric functions,” Doctoral dissertation, Lab. Theor. Phys., Joint Inst. Nucl. Res., Dubna (2004).

    Google Scholar 

  4. V. P. Spiridonov, Russ. Math. Surveys, 56, 185–186 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  5. J. F. van Diejen and V. P. Spiridonov, Math. Res. Lett., 7, 729–746 (2000).

    MATH  MathSciNet  Google Scholar 

  6. V. P. Spiridonov, St. Petersburg Math. J., 15, 929–967 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  7. E. M. Rains, “Transformations of elliptic hypergeometric integrals,” math.QA/0309252 (2003).

  8. F. J. van de Bult, E. M. Rains, and J. V. Stokman, “Properties of generalized univariate hypergeometric functions,” math.CA/0607250 (2006).

  9. V. P. Spiridonov and A. S. Zhedanov, Comm. Math. Phys., 210, 49–83 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. I. B. Frenkel and V. G. Turaev, “Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions,” in: The Arnold-Gelfand Mathematical Seminars: Geometry and Singularity Theory (V. O. Arnold, M. I. Gelfand, V. S. Retakh, and M. Smirnov, eds.), Birkhäuser, Boston, Mass. (1997), pp. 171–204.

    Google Scholar 

  11. M. A. Olshanetsky and A. M. Perelomov, Phys. Rep., 94, 313–404 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  12. V. I. Inozemtsev, Lett. Math. Phys., 17, 11–17 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  13. S. N. M. Ruijsenaars, Comm. Math. Phys., 110, 191–213 (1987).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. J. F. van Diejen, J. Math. Phys., 35, 2983–3004 (1994); “Families of commuting difference operators,” Doctoral dissertation, Universiteit van Amsterdam, Amsterdam (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Y. Komori and K. Hikami, J. Phys. A, 30, 4341–4364 (1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. S. N. M. Ruijsenaars, “Integrable BC N analytic difference operators: Hidden parameter symmetries and eigenfunctions,” in: New Trends in Integrability and Partial Solvability (NATO Sci Ser., Vol. 132, A. B. Shabat, A. González-López, M. Mañas, L. Martínez-Alonso, and M. A. Rodrígues), Kluwer, Dordrecht (2004), pp. 217–261.

    Google Scholar 

  17. J. F. van Diejen and V. P. Spiridonov, Internat. Math. Res. Notices, 2001, 1083–1110 (2001).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 150, No. 2, pp. 311–324, February, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spiridonov, V.P. Elliptic hypergeometric functions and Calogero-Sutherland-type models. Theor Math Phys 150, 266–277 (2007). https://doi.org/10.1007/s11232-007-0020-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-007-0020-5

Keywords

Navigation