Skip to main content
Log in

Integrability of the Egorov systems of hydrodynamic type

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We present integrability criterion for the Egorov systems of hydrodynamic type. We find the general solution by the generalized hodograph method and give examples. We discuss a description of triorthogonal curvilinear coordinate systems from the standpoint of reciprocal transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Dubrovin and S. P. Novikov, Sov. Math. Dokl., 27, 665–669 (1983); Russ. Math. Surveys, 44, No. 6, 35–124 (1989).

    MATH  Google Scholar 

  2. S. P. Tsarev, Sov. Math. Dokl., 31, 488–491 (1985); Math. USSR, Izv., 37, 397–419 (1991).

    MATH  Google Scholar 

  3. S. P. Tsarev, “On the integrability of the averaged KdV and Benney equations,” in: Singular Limits of Dispersive Waves (NATO ASI Ser., Ser. B, Phys., Vol. 320, N. M. Ercolani, I. R. Gabitov, C. D. Levermore, and D. Serre, eds.), Plenum, New York (1994), pp. 143–155; “Classical differential geometry and integrability of systems of hydrodynamic type,” in: Applications of Analytic and Geometrical Methods to Nonlinear Differential Equations (NATO ASI Ser., Ser. C, Math. Phys. Sci., Vol. 413, P. A. Clarkson, ed.), Kluwer, Dordrecht (1993), pp. 241–249; S. P. Tsarev, “Integrability of equations of hydrodynamic type from the end of the 19th to the end of the 20th century,” in: Integrability: The Seiberg-Witten and Witham Equations (H. W. Braden and I. M. Krichever, eds.), Gordon and Breach, Amsterdam (2000), pp. 251–265.

    Google Scholar 

  4. M. V. Pavlov and S. P. Tsarev, Russ. Math. Surveys, 46, No. 4, 196–197 (1991); M. V. Pavlov, Phys. Dokl., 39, 607–608, 615–617 (1994); 39, 745–747 (1994); 50, 220–223, 400–406 (1995); Russ. Math. Surveys, 49, 241–242 (1994).

    Article  MathSciNet  Google Scholar 

  5. M. V. Pavlov and S. P. Tsarev, Funct. Anal. Appl., 37, 32–45 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  6. I. M. Krichever, Funct. Anal. Appl., 31, 25–39 (1997); A. A. Akhmetshin, I. M. Krichever, and Yu. A. Volvovskii, Russ. Math. Surveys, 54, 427–429 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  7. V. E. Zakharov, Funct. Anal. Appl., 14, 89–98 (1980).

    Article  MATH  Google Scholar 

  8. B. A. Dubrovin, Nucl. Phys. B, 379, 627–689 (1992); Comm. Math. Phys., 145, 195–207 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  9. B. A. Dubrovin, “Geometry of 2D topological field theories,” in: Integrable Systems and Quantum Groups (Lect. Notes Math., Vol. 1620, M. Francaviglia and S. Greco, eds.), Springer, Berlin (1996), pp. 120–348.

    Chapter  Google Scholar 

  10. J. Gibbons, Phys. D, 3, 503–511 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  11. J. Gibbons and Y. Kodama, Phys. Lett. A, 135, 167–170 (1989); Y. Kodama, Phys. Lett. A, 147, 477–480 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  12. I. M. Krichever, “Whitham theory for integrable systems and topological quantum field theories,” in: New Symmetry Principles in Quantum Field Theory (NATO ASI Ser., Ser. B, Phys., Vol. 295, J. Frohlich, G.’t Hooft, A. Jaffe, G. Mack, P. K. Mitter, and R. Stora, eds.), Plenum, New York (1992), pp. 309–327; Comm. Pure Appl. Math., 47, 437–475 (1994); M. Mañas, E. Medina, and L. M. Alonso, J. Phys. A, 39, 2349 (2006); M. Mañas, L. M. Alonso, and E. Medina, J. Phys. A, 33, 2871–2894, 7181–7206 (2000); Q. P. Liu and M. Manas, J. Phys. A, 32, 5921–5927 (1999).

    Google Scholar 

  13. V. E. Zakharov, Phys. D, 3, 193–200 (1981).

    Article  ADS  Google Scholar 

  14. G. Darboux, Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, Paris (1910).

    MATH  Google Scholar 

  15. D. F. Egorov, Works in Differential Geometry [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  16. L. Bianchi, Opere, Vol. 3, Sisteme triple ortogonali, Ed. Cremonese, Rome (1955).

    Google Scholar 

  17. B. L. Roždestvenskií and N. N. Janenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics [in Russian], Nauka, Moscow (1968); English transl. (Trans. Math. Monog., Vol. 55), Amer. Math. Soc., New York (1983).

    Google Scholar 

  18. Y. Nutku, J. Math. Phys., 28, 2579–2585 (1987).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. E. V. Ferapontov, K. R. Khusnutdinova, and M. V. Pavlov, Theor. Math. Phys., 144, 907–915 (2005).

    Article  MathSciNet  Google Scholar 

  20. E. V. Ferapontov, Geom. Dedicata, 103, 33–49 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  21. O. I. Mokhov, Proc. Steklov. Math. Inst., 225, 269–284 (1999).

    MathSciNet  Google Scholar 

  22. E. V. Ferapontov and O. I. Mokhov, Funct. Anal. Appl., 30, No. 3, 195–203; E. V. Ferapontov, C. A. P. Galvao, O. I. Mokhov, and Y. Nutku, Comm. Math. Phys., 186, 649–669 (1997); O. I. Mokhov, “Differential equations of associativity in 2D topological field theories and geometry of nondiagonalizable systems of hydrodynamic type,” in: Abstracts Intl. Conf. on Integrable Systems “Nonlinearity and Integrability: From Mathematics to Physics,” Montpellier, France, February 21–24, 1995; E. V. Ferapontov and O. I. Mokhov, “The equations of associativity as hydrodynamic type systems: Hamiltonian representation and the integrability,” in: Nonlinear PhysicsTheory and Experiment. Nature, Structure and Properties of Nonlinear Phenomena (Proc. Intl. Workshop Lecce, Italy, 29 June–7 July, 1995, E. Alfinito, M. Boiti, L. Martina, and F. Pempinelli, eds.), World Scientific, River Edge, N. J. (1996), pp. 104–115.

  23. O. I. Mokhov, “Symplectic and Poisson geometry on loop spaces of manifolds and nonlinear equations,” in: Topics in Topology and Mathematical Physics (Am. Math. Soc. Transl., Ser. 2, Vol. 170, S. P. Novikov, ed.), Amer. Math. Soc., Providence, R. I. (1995), pp. 121–151.

    Google Scholar 

  24. M. V. Pavlov, Math. Notes, 57, 489–495 (1995); S. P. Tsarev, Math. Notes, 46, 569–573 (1989).

    Article  MathSciNet  Google Scholar 

  25. E. V. Ferapontov and M. V. Pavlov, J. Math. Phys., 44, 1150–1172 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. E. I. Ganzha and S. P. Tsarev, Russ. Math. Surveys, 51, 1200–1202 (1996); V. E. Zakharov, Theor. Math. Phys., 128, 946–956 (2001); Duke Math. J., 94, 103–139 (1998); “Applications of inverse scattering method to problem of differential geometry,” in: The Legacy of the Inverse Scattering Transform in Applied Mathematics (Contemp. Math., Vol. 301, J. Bona, R. Choudhury, and D. Kaup, eds.), Amer. Math. Soc., Providence, R. I. (2002), pp. 15–34.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 150, No. 2, pp. 263–285, February, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlov, M.V. Integrability of the Egorov systems of hydrodynamic type. Theor Math Phys 150, 225–243 (2007). https://doi.org/10.1007/s11232-007-0017-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-007-0017-0

Keywords

Navigation