Skip to main content
Log in

Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg-Landau Equation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the cubic complex Ginzburg-Landau equation. Using Hone's method, based on formal Laurent-series solutions and the residue theorem, we prove the absence of elliptic standing-wave solutions of this equation. This result complements a result by Hone, who proved the nonexistence of elliptic traveling-wave solutions. We show that it is more efficient to apply Hone's method to a system of polynomial differential equations rather than to an equivalent differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. A. Kudryashov, Mat. Model., 1, 151 (1989).

    MATH  MathSciNet  Google Scholar 

  2. G. S. Santos, J. Phys. Soc. Japan, 58, 4301 (1989).

    MathSciNet  Google Scholar 

  3. R. Conte and M. Musette, J. Phys. A, 25, 5609 (1992); V. A. Antonov and E. I. Timoshkova, Astron. Rep., 37, No. 2, 138 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  4. R. Conte and M. Musette, Phys. D, 69, 1 (1993).

    MathSciNet  Google Scholar 

  5. N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, Rev. Phys. E, 53, 1190 (1996).

    Google Scholar 

  6. E. I. Timoshkova, Astron. Rep., 43, 406 (1999); R. Grimshaw and M. Pavlov, Phys. Lett. A, 251, 25 (1999).

    ADS  Google Scholar 

  7. M. Musette and R. Conte, Phys. D, 181, 70 (2003); nlin.PS/0302051 (2003).

    Article  MathSciNet  Google Scholar 

  8. E. Fan, J. Phys. A, 36, 7009 (2003).

    ADS  MATH  MathSciNet  Google Scholar 

  9. N. A. Kudryashov, “Nonlinear differential equations with exact solutions expressed via theWeierstrass function,” nlin.CD/0312035 (2003).

  10. E. I. Timoshkova and S. Yu. Vernov, Phys. Atomic Nuclei, 68, 1947 (2005); math-ph/0402049 (2004); A. G. Nikitin and T. A. Barannyk, “Solitary wave and other solutions for nonlinear heat equations,” mathph/0303004 (2003); N. A. Kudryashov, “Simplest equation method to look for exact solutions of nonlinear differential equations,” nlin.SI/0406007 (2004).

    Google Scholar 

  11. V. A. Vladimirov and E. V. Kutafina, Rep. Math. Phys., 54, 261 (2004).

    MathSciNet  Google Scholar 

  12. R. Conte and M. Musette, “Solitary waves of nonlinear equations,” in: Dissipative Solitons (Lect. Notes Phys., Vol. 661, N. Akhmediev and A. Ankiewicz, eds.), Springer, Berlin (2005); nlin.PS/0407026 (2004); S. Yu. Vernov, “From the Laurent-series solutions of nonintegrable systems to the elliptic solutions of them,” astro-ph/0502356 (2005).

    Google Scholar 

  13. N. A. Kudryashov, Analytic Theory of Nonlinear Differential Equations [in Russian], RKhD, Moscow (2004).

    Google Scholar 

  14. M. J. Ablowitz, A. Ramani, and H. Segur, Lett. Nuovo Cimento, 23, 333 (1978); J. Math. Phys., 21, 715, 1006 (1980).

    MathSciNet  Google Scholar 

  15. P. Painleve, Lecons sur la theorie analytique des equations differentielles, Hermann, Paris (1897); on-line digital version in “The Cornell Library Historical Mathematics Monographs”: http://historical.library.cornell.edu/.

    Google Scholar 

  16. S. Yu. Vernov, Theor. Math. Phys., 135, 792 (2003).

    Google Scholar 

  17. A. N. W. Hone, Phys. D, 205, 292 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  18. V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz., 20, 1064 (1950); English transl.: “On the theory of superconductivity,” in: Collected Papers of L. D. Landau, Pergamon, Oxford (1965), p. 546.

    Google Scholar 

  19. I. Aranson and L. Kramer, Rev. Modern Phys., 74, 99 (2002); cond-mat/0106115 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  20. M. C. Cross and P. C. Hohenberg, Rev. Modern Phys., 65, 851 (1993).

    Article  ADS  Google Scholar 

  21. M. van Hecke, Phys. Rev. Lett., 80, 1896 (1998).

    ADS  Google Scholar 

  22. G. P. Agrawal, Nonlinear Fiber Optics, Acad. Press, Boston (1989).

    Google Scholar 

  23. M. van Hecke, C. Storm, and W. van Saarlos, Phys. D, 133, 1 (1999); patt-sol/9902005 (1999); P. Manneville, Dissipative Structures and Weak Turbulence, Acad. Press, Boston (1990).

    Google Scholar 

  24. L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Approach in the Soliton Theory [in Russian], Nauka, Moscow (1986); English transl.: L. D. Faddeev and L. A. Takhtajan, The Hamiltonian Methods in the Theory of Solitons, Berlin, Springer (1987); A. C. Newell, Solitons in Mathematics and Physics, SIAM, Philadelphia (1985); A. V. Mikhailov, E. A. Kuznetsov, A. C. Newell, and V. E. Zakharov, eds., “The Nonlinear Schrodinger Equations,” Phys. D (Proc.), 87, 1–380 (1995).

    Google Scholar 

  25. K. Nozaki and N. Bekki, J. Phys. Soc. Japan, 53, 1581 (1984); N. Bekki and K. Nozaki, Phys. Lett. A, 110, 133 (1985).

    Article  MathSciNet  Google Scholar 

  26. W. van Saarloos and P. C. Hohenberg, Phys. D, 56, 303 (1992); “Erratum,” 69, 209 (1993).

    MathSciNet  Google Scholar 

  27. L. Brusch, A. Torcini, M. van Hecke, M. G. Zimmermann, and M. Bar, Phys. D, 160, 127 (2001); nlin.CD/0104029 (2001); M. van Hecke, Phys. D, 174, 134 (2003); cond-mat/01100068 (2001).

    Article  MathSciNet  Google Scholar 

  28. F. Cariello and M. Tabor, Phys. D, 39, 77 (1989).

    Article  MathSciNet  Google Scholar 

  29. A. Erdelyi et al., eds., Higher Transcendental Functions (Based on notes left by H. Bateman), Vol. 3, McGraw-Hill, New York (1955); A. Hurwitz, Allgemeine Funktionentheorie und elliptische Funktionen, Springer, Berlin (1964); R. Courant, Geometrische Funktionentheorie, Springer, Berlin (1964).

    Google Scholar 

  30. S. Yu. Vernov, “Construction of single-valued solutions for nonintegrable systems with the help of the Painleve test,” in: Proc. Intl. Conf. “Computer Algebra in Scientific Computing” (CASC 2004, July 12–19, 2004, St. Petersburg, Russia, V. G. Ganzha, E. W. Mayr, and E. V. Vorozhtsov, eds.), Technische Univ., Munchen, Garching, Germany (2004), p. 457; nlin.SI/0407062 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 146, No. 1, pp. 161–171, January, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vernov, S.Y. Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg-Landau Equation. Theor Math Phys 146, 131–139 (2006). https://doi.org/10.1007/s11232-006-0013-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-006-0013-9

Keywords

Navigation