Advertisement

Theoretical and Mathematical Physics

, Volume 145, Issue 2, pp 1559–1575 | Cite as

Analytic Invariant Charge in QCD with Suppression of Nonperturbative Contributions at Large Q2

  • A. I. Alekseev
Article

Abstract

Based on the analytic invariant charge obtained from the results of the standard perturbation theory up to the four-loop approximation, we construct a “synthetic” model of the invariant charge in quantum chromodynamics. In the suggested model, the perturbative discontinuity on the timelike semiaxis in the complex Q2 plane is preserved, and nonperturbative contributions not only cancel nonphysical perturbation theory singularities in the infrared region but also rapidly decrease in the ultraviolet region. On one hand, the effective coupling function in this model is enhanced at zero (the dual superconductivity property of the quantum chromodynamics vacuum); on the other hand, a dynamical gluon mass appears. In our approach, fixing the parameter corresponding to the string tension parameter and normalizing (for example, at the point Mτ) entirely fix the synthetic invariant-charge model. The dynamical gluon mass mg is then fixed and is stable as the number of loops of the original perturbative approximation increases.

Keywords

analytic approach infrared region of quantum chromodynamics running coupling constant nonperturbative contributions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields [in Russian] (4th ed.), Nauka, Moscow (1984); English transl. prev. ed., Wiley, New York (1980).Google Scholar
  2. 2.
    P. J. Redmond, Phys. Rev., 112, 1404 (1958); N. N. Bogoliubov, A. A. Logunov, and D. V. Shirkov, Sov. Phys. JETP, 37, 574 (1960).CrossRefADSzbMATHMathSciNetGoogle Scholar
  3. 3.
    D. V. Shirkov and I. L. Solovtsov, JINR Rapid Commun., 2[76]-96, 5 (1996); hep-ph/9604363 (1996); Phys. Rev. Lett., 79, 1209 (1997).Google Scholar
  4. 4.
    Yu. L. Dokshitzer, G. Marchesini, and B. R. Webber, Nucl. Phys. B, 469, 93 (1996).CrossRefADSGoogle Scholar
  5. 5.
    I. L. Solovtsov and D. V. Shirkov, Theor. Math. Phys., 120, 1220 (1999); hep-ph/9909305 (1999).MathSciNetGoogle Scholar
  6. 6.
    D. V. Shirkov, Theor. Math. Phys., 136, 893 (2003); hep-th/0210013 (2002).CrossRefMathSciNetGoogle Scholar
  7. 7.
    B. A. Magradze, Internat. J. Mod. Phys. A, 15, 2715 (2000); “QCD coupling up to third order in standard and analytic perturbation theories,” Commun. Joint Inst. Nucl. Res. E2-2000-222, Dubna (2000); hep-ph/0010070 (2000); D. S. Kurashev and B. A. Magradze, Theor. Math. Phys., 135, 531 (2003); hep-ph/0104142 (2001).ADSzbMATHGoogle Scholar
  8. 8.
    A. I. Alekseev, Phys. Rev. D, 61, 114005 (2000); hep-ph/9906304 (1999).CrossRefADSGoogle Scholar
  9. 9.
    A. I. Alekseev, “On dependence of nonperturbative contributions in \(\bar \alpha _s (q^2 )\) on an initial approximation of perturbation theory in an analytic approach to QCD,” in: Proc. 15th Workshop on High Energy Physics and Quantum Field Theory (Tver, Russia, 2000, M. N. Dubinin and V. I. Savrin, eds.), Moscow State Univ., Res. Inst. Nucl. Phys., Moscow (2001), p. 290; hep-ph/0011178 (2000).Google Scholar
  10. 10.
    A. I. Alekseev, Phys. Atomic Nuclei, 65, 1678 (2002).Google Scholar
  11. 11.
    A. I. Alekseev, J. Phys. G, 27, L117 (2001); hep-ph/0105338 (2001).CrossRefADSGoogle Scholar
  12. 12.
    A. I. Alekseev, Few-Body Syst., 32, 193 (2003); hep-ph/0211339 (2002).ADSGoogle Scholar
  13. 13.
    S. Eidelman et al., Phys. Lett. B, 592, 1 (2004).ADSGoogle Scholar
  14. 14.
    S. Bethke, J. Phys. G, 26, R27 (2000); hep-ex/0004021 (2000).CrossRefADSGoogle Scholar
  15. 15.
    O. Biebel, Phys. Rep., 340, 165 (2001); A. A. Pivovarov, “Determination of the numerical value for the strong coupling constant from tau decays in perturbative QCD,” Preprint INR-TH/03-3, INR, Moscow (2003); hep-ph/0301074 (2003); Z. Phys. C, 53, 461 (1992); Nuovo Cimento A, 105, 813 (1992).CrossRefADSGoogle Scholar
  16. 16.
    Yu. A. Simonov, JETP Letters, 57, 525 (1993); Phys. Atomic Nuclei, 58, 107 (1995); 65, 135 (2002); 66, 764 (2003).ADSGoogle Scholar
  17. 17.
    D. V. Shirkov, Theor. Math. Phys., 132, 1309 (2002).CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    A. V. Nesterenko, Modern Phys. Lett. A, 15, 2401 (2000); Phys. Rev. D, 62, 094028 (2000); Internat. J. Mod. Phys. A, 18, 5475 (2003); A. V. Nesterenko and I. L. Solovtsov, Modern Phys. Lett. A, 16, 2517 (2001); V. Gogohia, Phys. Lett. B, 584, 225 (2004); hep-ph/0304163 (2003).CrossRefADSGoogle Scholar
  19. 19.
    G. Burgio, F. DiRenzo, G. Marchesini, and E. Onofri, Phys. Lett. B, 422, 219 (1998); Nucl. Phys. (Proc. Suppl.), 63, 805 (1998); G. Burgio, F. Di Renzo, C. Parrinello, and C. Pittori, Nucl. Phys. (Proc. Suppl.), 73, 623 (1999); 74, 388 (1999); P. Boucaud et al., JHEP, 0004, 006 (2000).ADSGoogle Scholar
  20. 20.
    L. von Smekal, A. Hauck, and R. Alkofer, Ann. Phys., 267, 1 (1998); “Erratum, ” 269, 182 (1998); hep-ph/9707327 (1997); C. D. Roberts and S. M. Schmidt, Progr. Part. Nucl. Phys., 45, S1 (2000); nucl-th/0005064 (2000); R. Alkofer and L. von Smekal, Phys. Rep., 353, 281 (2001); hep-ph/0007355 (2000).ADSGoogle Scholar
  21. 21.
    A. I. Alekseev, Sov. J. Nucl. Phys., 33, 269 (1981); A. I. Alekseev, B. A. Arbuzov, and V. A. Baikov, Theor. Math. Phys., 52, 739 (1982); A. I. Alekseev and V. F. Edneral, Sov. J. Nucl. Phys., 45, 685 (1987).Google Scholar
  22. 22.
    A. I. Alekseev, “QCD running coupling: Freezing versus enhancement in the infrared region,” in: Proc. 12th Intl. Workshop on High Energy Physics and Quantum Field Theory (Samara, Russia, 1997, B. B. Levtchenko, ed.), Moscow State Univ., Res. Inst. Nucl. Phys., Moscow (1999), p. 334; Preprint IHEP 97-90, Inst. High Energy Phys., Protvino (1997); hep-ph/9802372 (1998).Google Scholar
  23. 23.
    A. I. Alekseev and B. A. Arbuzov, Phys. Atomic Nuclei, 61, 264 (1998); Modern Phys. Lett. A, 13, 1447 (1998).ADSGoogle Scholar
  24. 24.
    A. I. Alekseev, “A model of the QCD running coupling constant with dynamically generated mass and enhancement in the infrared region,” in: Proc. Workshop on Nonperturbative Methods in Quantum Field Theory (Adelaide, Australia, 1998, A. V. Schreiber, A. G. Williams, and A. W. Thomas, eds.), World Scientific, Singapore (1998), p. 104; Preprint IHEP 98-41, Inst. High Energy Phys., Protvino (1998); hep-ph/9808206 (1998).Google Scholar
  25. 25.
    E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Phys. Rev. D, 17, 3090 (1978); 21, 203 (1980); J. L. Richardson, Phys. Lett. B, 82, 272 (1979).CrossRefADSGoogle Scholar
  26. 26.
    W. Buchmuller, G. Grunberg, and S.-H. H. Tye, Phys. Rev. Lett., 45, 103 (1980); W. Buchmuller and S.-H. H. Tye, Phys. Rev. D, 24, 132 (1981).ADSGoogle Scholar
  27. 27.
    V. V. Kiselev, A. E. Kovalsky, and A. I. Onishchenko, Phys. Rev. D, 64, 054009 (2001); V. V. Kiselev and A. K. Likhoded, Phys. Usp., 45, 455 (2002); V. V. Kiselev, A. K. Likhoded, O. N. Pakhomova, and V. A. Saleev, Phys. Rev. D, 65, 034013 (2002); 66, 034030 (2002).ADSGoogle Scholar
  28. 28.
    D. J. Gross and F. Wilczek, Phys. Rev. Lett., 30, 1343 (1973); H. D. Politzer, Phys. Rev. Lett., 30, 1346 (1973).CrossRefADSGoogle Scholar
  29. 29.
    D. R. T. Jones, Nucl. Phys. B, 75, 531 (1974); W. E. Caswell, Phys. Rev. Lett., 33, 244 (1974); E. Sh. Egoryan and O. V. Tarasov, Theor. Math. Phys., 41, 863 (1979); O. V. Tarasov, A. A. Vladimirov, and A. Yu. Zharkov, Phys. Lett. B, 93, 429 (1980); S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B, 303, 334 (1993); T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin, Phys. Lett. B, 400, 379 (1997).CrossRefADSGoogle Scholar
  30. 30.
    K. G. Chetyrkin, B. A. Kniehl, and M. Steinhauser, Phys. Rev. Lett., 79, 2184 (1997).ADSGoogle Scholar
  31. 31.
    L. D. Soloviev, Phys. Rev. D, 58, 035005 (1998); 61, 015009 (2000).CrossRefADSGoogle Scholar
  32. 32.
    J. M. Cornwall, Phys. Rev. D, 26, 1453 (1982).CrossRefADSGoogle Scholar
  33. 33.
    A. I. Alekseev and B. A. Arbuzov, Modern Phys. Lett. A, 20, 103 (2005); hep-ph/0411339 (2004).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. I. Alekseev
    • 1
  1. 1.Institute for High Energy PhysicsProtvino, Moscow OblastRussia

Personalised recommendations