Advertisement

Theoretical and Mathematical Physics

, Volume 145, Issue 2, pp 1525–1532 | Cite as

Aspects of Matrix Theory and Noncommutative Geometry

  • M. Bennai
  • Z. Sakhi
Article
  • 52 Downloads

Abstract

We review some basic foundations of the matrix model of M-theory. We study the important problem of compactifying the matrix theory in relation to noncommutative geometry. We show that there exist solutions of this problem other than the well-known toroidal solutions of Connes, Douglas, and Schwarz.

Keywords

D0-branes matrix theory noncommutative geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. J. Duff, Internat. J. Mod. Phys. A, 11, 5623 (1996).zbMATHMathSciNetGoogle Scholar
  2. 2.
    E. Witten, Nucl. Phys. B, 443, 85 (1995).CrossRefADSzbMATHMathSciNetGoogle Scholar
  3. 3.
    T. Banks, W. Fischler, S. Shenker, and L. Susskind, Phys. Rev. D, 55, 5112 (1997).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    J. Polchinski, “TASI lectures on D-branes,” hep-th/9611050 (1996).Google Scholar
  5. 5.
    E. Witten, Nucl. Phys. B, 460, 335 (1996).ADSzbMATHMathSciNetGoogle Scholar
  6. 6.
    D. Fairlie, Modern Phys. Lett. A, 13, 263 (1998).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    S. Weinberg, Phys. Rev., 150, 1313 (1966).CrossRefADSGoogle Scholar
  8. 8.
    A. Connes, Noncommutative Geometry, Acad. Press, San Diego, Calif. (1994).Google Scholar
  9. 9.
    A. Connes, M. R. Douglas, and A. Schwarz, JHEP, 9802, 003 (1998); hep-th/9711162 (1997).ADSMathSciNetGoogle Scholar
  10. 10.
    N. Kim, Phys. Rev. D, 59, 126001 (1999).ADSMathSciNetGoogle Scholar
  11. 11.
    E. Kim, H. Kim, and C.-Y. Lee, J. Math. Phys., 42, 2677 (2001).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    I. Benkadour, M. Bennai, E. Diaf, and E. H. Saidi, Class. Q. Grav., 1765 (2000).Google Scholar
  13. 13.
    U. H. Danielsson, G. Ferretti, and B. Sundborg, Internat. J. Mod. Phys. A, 11, 5463 (1996).MathSciNetGoogle Scholar
  14. 14.
    N. Ishibashi, H. Kawai, Y. Kitazawa, and A. Tsuchiya, Nucl. Phys. B, 498, 467 (1997).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    M. Rieffel, Canad. J. Math., 40, 257 (1988).zbMATHMathSciNetGoogle Scholar
  16. 16.
    A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and E. Sokatchev, Class. Q. Grav., 1, 496 (1984); 4, 1255 (1987); Comm. Math. Phys., 103, 515 (1986); E. H. Saidi and M. Zakkari, Class. Q. Grav., 7, 123 (1990); Phys. Rev. D, 46, 777 (1992).MathSciNetGoogle Scholar
  17. 17.
    M. Bennai and E. H. Saidi, Phys. Lett. B, 550, 108 (2002); Nucl. Phys. B, 677, 587 (2004).ADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • M. Bennai
    • 1
  • Z. Sakhi
    • 1
  1. 1.Groupe de Physique des Hautes Energies et Cosmologie, Departement de Physique, Faculte des Sciences Ben MsikUniversite Hassan II - MohammediaCasablancaMorocco

Personalised recommendations