Skip to main content
Log in

Relativistically Covariant Quantum Field Theory of the Maslov Complex Germ

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider an explicitly covariant formulation of the quantum field theory of the Maslov complex germ (semiclassical field theory) in the example of a scalar field. The main object in the theory is the “semiclassical bundle” whose base is the set of classical states and whose fibers are the spaces of states of the quantum theory in an external field. The respective semiclassical states occurring in the Maslov complex germ theory at a point and in the theory of Lagrangian manifolds with a complex germ are represented by points and surfaces in the semiclassical bundle space. We formulate semiclassical analogues of quantum field theory axioms and establish a relation between the covariant semiclassical theory and both the Hamiltonian formulation previously constructed and the axiomatic field theory constructions Schwinger sources, the Bogoliubov S-matrix, and the Lehmann-Symanzik-Zimmermann R-functions. We propose a new covariant formulation of classical field theory and a scheme of semiclassical quantization of fields that does not involve a postulated replacement of Poisson brackets with commutators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. P. Maslov, Operator Methods [in Russian], Nauka, Moscow (1973); English transl.: Operational Methods, Mir, Moscow (1976).

    Google Scholar 

  2. V. P. Maslov, Complex WKB Method in Nonlinear Equations [in Russian], Nauka, Moscow (1977); English transl.: Complex WKB Method for Nonlinear Equations: I. Linear Theory, Birkhauser, Basel (1994).

    Google Scholar 

  3. V. P. Maslov, Theorie des perturbations et methodes asymptotiques [in Russian], MSU, Moscow (1965); French transl., Dunod, Paris (1972).

    Google Scholar 

  4. V. G. Bagrov, V. V. Belov, and I. M. Ternov, Theor. Math. Phys., 50, 256 (1982).

    Article  Google Scholar 

  5. V. P. Maslov and O. Yu. Shvedov, Complex Germ Method in the Many-Body Problem and in Quantum Field Theory [in Russian], URSS, Moscow (2000).

    Google Scholar 

  6. V. P. Maslov and O. Yu. Shvedov, Theor. Math. Phys., 114, 233 (1998).

    Google Scholar 

  7. O. Yu. Shvedov, J. Math. Phys., 43, 1809 (2002).

    Article  Google Scholar 

  8. N. N. Bogoliubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of Quantum Field Theory [in Russian], Nauka, Moscow (1987); English transl., Kluwer, Dordrecht (1990).

    Google Scholar 

  9. H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo Cimento, 6, 319 (1957); K. Nishijima, Phys. Rev., 119, 485 (1960).

    Google Scholar 

  10. N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields [in Russian] (4th ed.), Nauka, Moscow (1984); English transl. prev. ed., Wiley, New York (1980).

    Google Scholar 

  11. N. N. Bogoliubov, B. V. Medvedev, and M. K. Polivanov, Problems in the Theory of Dispersion Relations [in Russian], Fizmatgiz, Moscow (1958); English transl.: Theory of Dispersion Relations, Lawrence Radiation Laboratory, Berkeley, Calif. (1961); B. V. Medvedev, M. C. Polivanov, V. P. Pavlov, and A. D. Sukhanov, Theor. Math. Phys., 13, 939 (1972).

    Google Scholar 

  12. O. I. Zavialov, Renormalized Feynman Diagrams [in Russian], Nauka, Moscow (1979); English version: Renormalized Quantum Field Theory (Math. and Its Appl., Soviet Ser., Vol. 21), Kluwer, Dordrecht (1990).

    Google Scholar 

  13. A. A. Slavnov and L. D. Faddeev, Introduction to Quantum Theory of Gauge Fields [in Russian], Nauka, Moscow (1988); English transl.: L. D. Faddeev and A. A. Slavnov Gauge Fields: Introduction to Quantum Theory, Benjamin, London (1990).

    Google Scholar 

  14. J. Schwinger, Particles, Sources, and Fields, Vol. 2, Addison-Wesley, Reading, Mass. (1973).

    Google Scholar 

  15. O. Yu. Shvedov, Math. Notes, 65, 365 (1999); Sb. Math., 190, 1523 (1999).

    Google Scholar 

  16. O. Yu. Shvedov, Ann. Phys., 296, 51 (2002).

    Article  Google Scholar 

  17. V. P. Maslov and O. Yu. Shvedov, Theor. Math. Phys., 104, 1141 (1995).

    Article  Google Scholar 

  18. A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourao, and T. Thiemann, J. Math. Phys., 36, 6456 (1995); D. Giulini and D. Marolf, Class. Q. Grav., 16, 2489 (1999); O. Yu. Shvedov, Ann. Phys., 302, 2 (2002).

    Article  Google Scholar 

  19. O. Yu. Shvedov, Theor. Math. Phys., 136, 1258 (2003); hep-th/0111265 (2001).

    Article  Google Scholar 

  20. R. Peierls, Proc. Roy. Soc. London A, 214, 143 (1952).

    Google Scholar 

  21. B. S. DeWitt, Dynamic Theory of Groups and Fields, Gordon and Breach, New York (1965); Phys. Rev., 162, No. 5 (1967); “A gauge invariant effective action,” in: Quantum Gravity 2 (C. J. Isham, R. Penrose, and D. W. Sciama, eds.), Clarendon, Oxford (1981).

    Google Scholar 

  22. D. Marolf, Ann. Phys., 236, 392 (1994).

    Article  Google Scholar 

  23. O. Yu. Shvedov, “An axiomatic approach to semiclassical field perturbation theory,” hep-th/0412302 (2004).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 144, No. 3, pp. 492–512, September, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shvedov, O.Y. Relativistically Covariant Quantum Field Theory of the Maslov Complex Germ. Theor Math Phys 144, 1296–1314 (2005). https://doi.org/10.1007/s11232-005-0161-3

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-005-0161-3

Keywords

Navigation