Skip to main content
Log in

Quantization scheme for modular q-difference equations

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider modular pairs of certain second-order q-difference equations. An example of such a pair is the t-Q Baxter equations for the quantum relativistic Toda lattice in the strong coupling regime. Another example from quantum mechanics is q-deformation of the Schrödinger equation with a hyperbolic potential. We show that the analyticity condition for the wave function or the Baxter function leads to a set of transcendental equations for the coefficients of the potential or the transfer matrix, the solution of which is their discrete spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. D. Faddeev, Lett. Math. Phys., 34, 249–254 (1995); L. D. Faddeev, “Modular double of quantum group,” in: Conférence Moshé Flato 1999: Quantization, Deformation, and Symmetries (Math. Phys. Stud., Vol. 21, G. Dito and D. Sternheimer, eds.), Vol. 1, Kluwer Academic, Dordrecht (2000), pp. 149–156; L. D. Faddeev, R. M. Kashaev, and A. Yu. Volkov, Comm. Math. Phys., 219, 199–219 (2001); L. D. Faddeev and R. M. Kashaev, J. Phys. A, 35, 4043–4048 (2002).

    Google Scholar 

  2. S. Kharchev, D. Lebedev, and M. Semenov-Tian-Shansky, Comm. Math. Phys., 225, 573–609 (2002).

    Google Scholar 

  3. M. Gutzwiller, Ann. Phys., 133, 304–331 (1981); V. Pasquier and M. Gaudin, J. Phys. A, 25, 5243–5252 (1992); S. Kharchev and D. Lebedev, Lett. Math. Phys., 50, 53–77 (1999).

    Google Scholar 

  4. V. B. Kuznetsov and A. V. Tsiganov, “Separation of variables for the quantum relativistic Toda lattices, ” hep-th/9402111 (1994); G. Pronko and S. Sergeev, J. Appl. Math., 1, 47–68 (2001).

  5. F. A. Smirnov, “Dual Baxter equations and quantization of affine Jacobian,” math-ph/0001032 (2000); “Baxter equations and deformation of Abelian differentials,” math-ph/0302014 (2003).

  6. L. D. Faddeev and R. M. Kashaev, Modern Phys. Lett. A, 9, 427–434 (1994).

    Google Scholar 

  7. S. M. Sergeev, J. Phys. A, 32, 5693–5714 (1999); S. M. Sergeev, Theor. Math. Phys., 124, 1187–1201 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 142, No. 3, pp. 500–509, March, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sergeev, S.M. Quantization scheme for modular q-difference equations. Theor Math Phys 142, 422–430 (2005). https://doi.org/10.1007/s11232-005-0033-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-005-0033-x

Keywords

Navigation